Synthesis 2022; 54(15): 3409-3413
DOI: 10.1055/a-1776-0929
special topic
Bürgenstock Special Section 2021 – Future Stars in Organic Chemistry

Properties and Synthetic Performances of Phenylamino Cyanoarenes under One-Photon Excitation Manifolds

Tommaso Bortolato
a   Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
,
Mateusz Dyguda
a   Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
b   Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
,
Alberto Vega-Peñaloza
a   Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
,
a   Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
› Author Affiliations
Università degli Studi di Padova
Università degli Studi di Padova (P-DiSC#11BIRD2020-UNIPD) (L.D.), and Fondazione Cassa di Risparmio di Padova e Rovigo (CaRiPaRo Foundation, Synergy – Progetti di Eccellenza 2018) (L.D.) are acknowledged for financial support.


In memory of Blas Flores Pérez (1963–2021)

Abstract

The synthesis of a set of new organic photocatalysts (PCs) with a donor-acceptor carbazolyl dicyanobenzene structure is reported. The PCs developed have fine-tailored redox potentials from –1.62 V (PC•+/PC*) to 1.36 V (PC*/PC•–) and were accessed through a straightforward two-step synthesis. The potential of these PCs was demonstrated in synthetically relevant reactions with mechanistically opposite thermodynamic requirements, previously reported only in the presence of precious Ir-based PCs. In addition, the PCs outperformed the yields promoted by the well-established 4CzIPN organic dye in both type of reactions.

Supporting Information



Publication History

Received: 08 December 2021

Accepted after revision: 18 February 2022

Accepted Manuscript online:
18 February 2022

Article published online:
19 April 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 1b Shaw MH, Twilton JD. A, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 2a Silvi M, Melchiorre P. Nature 2018; 554: 41
    • 2b Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DW. C. Chem. Rev. 2022; 122: 1485
  • 3 Schultz DM, Yoon TP. Science 2014; 343: 1239176
  • 4 McAtee RC, McClain EJ, Stephenson CR. J. Trends Chem. 2019; 1: 111
    • 5a Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 5b Vega-Peñaloza A, Mateos J, Companyó X, Escudero-Casao M, Dell’Amico L. Angew. Chem. Int. Ed. 2021; 60: 1082
    • 5c Amos SG. E, Garreau M, Buzzetti L, Waser J. Beilstein J. Org. Chem. 2020; 16: 1163
    • 5d Mateos J, Rigodanza F, Vega-Peñaloza A, Sartorel A, Natali M, Bortolato T, Pelosi G, Companyó X, Bonchio M, Dell’Amico L. Angew. Chem. Int. Ed. 2020; 59: 1302
    • 5e Costa P, Vega-Peñaloza A, Cognigni L, Bonchio M. ACS Sustainable Chem. Eng. 2021; 9: 15694
  • 6 Shang TY, Lu LH, Cao Z, Liu Y, He WM, Yu B. Chem. Commun. 2019; 55: 5408
  • 7 Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature 2012; 492: 234
  • 8 Luo J, Zhang J. ACS Catal. 2016; 6: 873
  • 9 Speckmeier E, Fischer TG, Zeitler K. J. Am. Chem. Soc. 2018; 140: 15353
  • 10 Liu Y, Chen X.-L, Li X.-Y, Zhu S.-S, Li S.-J, Song Y, Qu L.-B, Yu B. J. Am. Chem. Soc. 2021; 143: 964
  • 11 Lu J, Pattengale B, Liu Q, Yang S, Shi W, Li S, Huang J, Zhang J. J. Am. Chem. Soc. 2018; 140: 13719
  • 12 Badir SO, Dumoulin A, Matsui JK, Molander GA. Angew. Chem. Int. Ed. 2018; 57: 6610
    • 13a Duhail T, Bortolato T, Mateos J, Anselmi E, Jelier B, Togni A, Magnier E, Dagousset G, Dell’Amico L. Org. Lett. 2021; 23: 7088
    • 13b Singh VK, Yu C, Badgujar S, Kim Y, Kwon Y, Kim D, Lee J, Akhter T, Thangavel G, Park LS, Lee J, Nandajan PC, Wannemacher R, Milian-Medina B, Lüer L, Kim KS, Gierschner J, Kwon MS. Nat. Catal. 2018; 1: 794
  • 14 Xu J, Cao J, Wu X, Wang H, Yang X, Tang X, Toh RW, Zhou R, Yeow EK. L, Wu J. J. Am. Chem. Soc. 2021; 143: 13266
  • 15 Zhu S, Das A, Bui L, Zhou H, Curran DP, Rueping M. J. Am. Chem. Soc. 2013; 135: 1823
  • 16 Singh PS, Evans DH. J. Phys. Chem. B 2006; 110: 637
  • 17 In our catalytic system, the removal of oxygen from the reaction medium causes a detriment in the overall reaction yields (see SI, Table 2).
    • 18a Oster G, Wotherspoon N. J. Chem. Phys. 1954; 22: 157
    • 18b Majek M, Filace F, Jacobi von Wangelin A. Beilstein J. Org. Chem. 2014; 10: 981
  • 19 Klauck FJ. R, James MJ, Glorius F. Angew. Chem. Int. Ed. 2017; 56: 12336