Synthesis 2022; 54(10): 2340-2349
DOI: 10.1055/a-1732-4597
short review

Tertiary Alkylative Suzuki–Miyaura Couplings

Naoki Tsuchiya
a   Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
,
b   Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London, WC1H 0AJ, UK
,
a   Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611, Japan
› Author Affiliations
We would like to thank the Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (JST CREST) (JPMJCR18R4), JST Support for Pioneering Research Initiated by the Next Generation (SPRING) (JPMJSP2111), a Grant-in-Aid for Scientific Research (B) (21H01939), and Yamaguchi University for financial support.


Abstract

Suzuki–Miyaura coupling is an extremely useful way to construct Csp2–Csp2 carbon bonds. On the other hand, Csp2–Csp3 coupling reactions do not work well, and tert-alkylative Suzuki–Miyaura coupling is particularly challenging due to problematic oxidative addition and β-hydride elimination side reactions. In this short review, we will introduce recent examples of tert-alkylative Suzuki–Miyaura couplings with tert-alkyl electrophiles or -boron reagents. The review will mainly focus on catalyst and product structures and on the proposed mechanisms.

1 Introduction

2 Ni-Catalyzed tert-Alkylative Couplings

3 Pd-Catalyzed tert-Alkylative Couplings

4 Fe-Catalyzed tert-Alkylative Couplings

5 tert-Alkylative Couplings with 1-Alkenyl Borons

6 tert-Alkylative Couplings under Photoirradiation

7 Stereospecific tert-Alkylative Couplings

8 Conclusion



Publication History

Received: 15 December 2021

Accepted after revision: 05 January 2022

Accepted Manuscript online:
05 January 2022

Article published online:
15 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Miyaura N, Yamada K, Suzuki A. Tetrahedron Lett. 1979; 437
    • 1b Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
  • 3 Zultanski SL, Fu GC. J. Am. Chem. Soc. 2013; 135: 624
  • 4 Yotsuji K, Hoshiya N, Kobayashi T, Fukuda H, Abe H, Arisawa M, Shuto S. Adv. Synth. Catal. 2015; 357: 1022
  • 5 Ariki ZT, Maekawa Y, Nambo M, Crudden CM. J. Am. Chem. Soc. 2018; 140: 78
  • 6 Harris MR, Li Q, Lian Y, Xiao J, Londregan AT. Org. Lett. 2017; 19: 2450
  • 7 Harris MR, Wisniewska HM, Jiao W, Wang X, Bradow JN. Org. Lett. 2018; 20: 2867
  • 8 Kleban I, Radchenko DS, Tymtsunik AV, Shuvakin S, Konovets AI, Rassukana Y, Grygorenko OO. Monatsh. Chem. 2020; 151: 953
  • 10 Kondo M, Kanazawa J, Ichikawa T, Shimokawa T, Nagashima Y, Miyamoto K, Uchiyama M. Angew. Chem. Int. Ed. 2020; 59: 1970
  • 11 Shelp RA, Ciro A, Pu Y, Merchant RR, Hughes JM. E, Walsh PJ. Chem. Sci. 2021; 12: 7066
  • 12 Crockett MP, Tyrol CC, Wong AS, Li B, Byers JA. Org. Lett. 2018; 20: 5233
  • 13 Crockett MP, Wong AS, Li B, Byers JA. Angew. Chem. Int. Ed. 2020; 59: 5392
  • 14 Nakamura K, Hara R, Sunada Y, Nishikata T. ACS Catal. 2018; 8: 6791
    • 15a Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
    • 15b Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 15c Teplý F. Collect. Czech. Chem. Commun. 2011; 76: 859
    • 15d Tucker JW, Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
    • 15e Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
  • 16 Reina DF, Ruffoni A, Al-Faiyz YS. S, Douglas JJ, Sheikh NS, Leonori D. ACS Catal. 2017; 7: 4126
  • 17 Huang H.-J, Wang Y.-T, Wu Y.-K, Ryu I. Org. Chem. Front. 2020; 7: 1266
  • 18 Primer DN, Molander GA. J. Am. Chem. Soc. 2017; 139: 9847
  • 19 VanHeyst MD, Qi J, Roecker AJ, Hughes JM. E, Cheng L, Zhao Z, Yin J. Org. Lett. 2020; 22: 1648
  • 20 Sato Y, Nakamura K, Sumida Y, Hashizume D, Hosoya T, Ohmiya H. J. Am. Chem. Soc. 2020; 142: 9938
  • 21 Sato Y, Miyamoto Y, Sumida Y, Hosoya T, Ohmiya H. Org. Biomol. Chem. 2020; 18: 6598
  • 22 Zhou Q, Cobb KM, Tan T, Watson MP. J. Am. Chem. Soc. 2016; 138: 12057
    • 23a Nagao K, Yokobori U, Makida Y, Ohmiya H, Sawamura M. J. Am. Chem. Soc. 2012; 134: 8982
    • 23b Harris MR, Hanna LE, Greene MA, Moore C, Jarvo ER. J. Am. Chem. Soc. 2013; 135: 3303
  • 24 Xu J, Bercher OP, Watson MP. J. Am. Chem. Soc. 2021; 143, 8608
  • 25 Yoshinaga Y, Yamamoto T, Suginome M. Angew. Chem. Int. Ed. 2020; 59: 7251
  • 26 Xue W, Jia X, Wang X, Tao X, Yin Z, Gong H. Chem. Soc. Rev. 2021; 50: 4162