Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2022; 54(02): 429-438
DOI: 10.1055/a-1625-9538
DOI: 10.1055/a-1625-9538
paper
A Catalyst-Free Synthesis of Fused Perfluoroalkylated 2,3-Dihydroisoxazoles via Oxa-Michael-Aldol Annulation
The authors are grateful to the National Natural Science Foundation of China (Grant No. 21672138) for financial support.

Abstract
A novel synthesis of fused perfluoroalkylated 2,3-dihydroisoxazoles is achieved via oxa-Michael-aldol annulation between perfluoroalk-2-ynoates and N-hydroxyimides. This method provides a convenient route for the synthesis of pyrrolidin-2-one-fused perfluoroalkylated 2,3-dihydroisoxazoles in yields of up to 97%. Diverse and pharmaceutically attractive polycyclic scaffolds can be obtained rapidly and efficiently under these mild, catalyst-free conditions.
Key words
dihydroisoxazoles - piperidin-2-ones - perfluoroalkylated - oxa-Michael-aldol annulation - catalyst-free conditionsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1625-9538.
- Supporting Information
Publication History
Received: 03 August 2021
Accepted after revision: 31 August 2021
Accepted Manuscript online:
31 August 2021
Article published online:
17 September 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Habeeb AG, Praveen PN, Knaus EE. J. Med. Chem. 2001; 44: 2921
- 1b Fraley ME, Garbaccio RM, Hartman GD. WO Patent WO2006023440, 2006
- 2a Sailu B, Srinivas M, Satya SA, Balram B, Ram B, Taara B, Vasudha B. Pharm. Chem. 2012; 4: 2036
- 2b Kadnor V, Pandhare G, Gadhave A, Uphade B. Rasayan J. Chem. 2011; 4: 437
- 2c Gutierrez M, Matus MF, Poblete T, Amigo J, Vallejos G, Astudillo L. J. Pharm. Pharmacol. 2013; 65: 1796
- 2d Banerjee M, Azam AM, Sahu SK. J. Chem. Pharm. Sci. 2009; 2: 35
- 3a Chukanov NV, Reznikov VA. Russ. Chem. Bull. 2011; 60: 379
- 3b Pinho e Melo TM. V. D. Eur. J. Org. Chem. 2010; 3363
- 3c Freeman JP. Chem. Rev. 1983; 83: 241
- 3d Alibes R, Blanco P, Casas E, Closa M, March P, Figueredo M, Font J, Sanfeliu E, Larena AA. J. Org. Chem. 2005; 70: 3157
- 4a Giurgea C, Salama M. Prog. Neuro-Psychopharmacol. 1977; 1: 235
- 4b Winblad B. CNS Drug Rev. 2005; 11: 169
- 4c Waegemans T, Wilsher CR, Danniau A, Ferris SH, Kurz A, Winblad B. Dement. Geriatr. Cogn. Disord. 2002; 13: 217
- 4d Malykh AG, Sadaie MR. Drugs 2010; 70: 287
- 4e Wheble PC. R, Sena ES, Macleod MR. Cerebrovasc. Dis. 2008; 25: 5
- 4f Gualtieri F, Manetti D, Romanelli MN, Ghelardini C. Curr. Pharm. Des. 2002; 8: 125
- 4g Mohan G, Madhwi O, Divya Y, Swati P, Rakesh Y. ACS Chem. Neurosci. 2020; 11: 2849
- 4h Aida J, Fushimi M, Kusumoto T, Sugiyama H, Arimura N, Ikeda S, Sasaki M, Sogabe S, Aoyama K, Koike T. J. Med. Chem. 2018; 61: 9205
- 5a Speck K, Magauer T. Beilstein J. Org. Chem. 2013; 9: 2048
- 5b Sanchez C, Mendez C, Salas JA. Nat. Prod. Rep. 2006; 23: 1007
- 5c Gundugdu O, Noma SA. A, Taskin T, Ates B, Kishali N. J. Mol. Struct. 2020; 1204: 127523
- 5d Mikolasch A, Hessel S, Salazar MG, Neumann H, Manda K, Gordes D, Schmidt E, Thurow K, Hammer E, Lindequist U, Beller M, Schauer F. Chem. Pharm. Bull. 2008; 56: 781
- 5e Hardcastle IR, Ahmed SU, Atkins H, Farnie G, Golding BT, Griffin RJ, Guyenne S, Hutton C, Kallblad P, Kemp SJ, Kitching MS, Newell DR, Norbedo S, Northen JS, Reid RJ, Sarvanan K, Willems HM. G, Lunec J. J. Med. Chem. 2006; 49: 6209
- 5f Schneider MJ. Pyridine and Piperidine Alkaloids: An Update. In Alkaloids: Chemical and Biochemical Perspectives, Vol. 10. Pelletier SW. Elsevier Science Ltd; Oxford: 1996
- 6a Brown ED, Wright GD. Nature 2016; 529: 336
- 6b Wright GD. Nat. Prod. Rep. 2017; 34: 694
- 6c Neto LR, Filho JT, Neves BJ, Maidana RL, Guimaraes AC, Furnham N, Andrade CH, Silva FP. Front. Chem. 2020; 8: 93
- 6d Radhika T, Babu VH. Asian J. Pharm. Clin. Res. 2019; 12: 245
- 6e Alfawaz AA. S, Yassine R, Obaid A, Sandhya B, Fareeda A, Quamrul HM. Chem. Biol. Drug Des. 2020; 96: 1418
- 7a Youseftabar-Miri L, Ramazani A, Ahmadi E, Sedrpoushan A. Phosphorus, Sulfur Silicon Relat. Elem. 2007; 182: 2523
- 7b Zhou Q, Chu X, Ge F, Wang Y, Lu T. Adv. Synth. Catal. 2013; 355: 2787
- 7c Zhao S, Zhu Y, Wu Y, Lu T, Zhou Q. ChemistrySelect 2017; 2: 1700
- 7d Xie J, Yu B, Guo C, He L. Green Chem. 2015; 17: 4061
- 7e Xie J, He L, Fu H, Wang N, Wang M. Curr. Catal. 2018; 7: 60
- 8a Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 8b Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Acena JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
- 8c Park BK, Kitteringham NR, O’Neill PM. Annu. Rev. Pharmacol. 2001; 41: 443
- 8d Tamejiro H, Yamamoto H. Organofluorine Compounds: Chemistry and Applications . Springer-Verlag; Berlin: 2000
- 9 For a recent review, see: Sun X, Han J, Chen J, Zhang H, Cao W. Chem. Rec. 2016; 16: 907
- 10 CCDC 1919617 (3r′) contains the supplementary crystallographic data for this paper. Unit cell parameters (3r′): space group = P2(1)/c, a = 8.504(10) Å, b = 11.766(14) Å, c = 16.165(19) Å, α = 90°, β = 90.479(14)°, γ = 90°. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 11 Hamper BC. Org. Synth. 1992; 70: 246
- 12 Kushch O, Hordieieva I, Novikova K, Litvinov Y, Kompanets M, Shendrik A, Opeida I. J. Org. Chem. 2020; 85: 7112