Subscribe to RSS
DOI: 10.1055/a-1549-0903
Process Development of a Copper(II)-Catalyzed Dehydration of an N-Acyl Prolinal Oxime: Cascade Process and Application at an Elevated Lab Scale
Authors
We gratefully acknowledge the generous support from the Europäische Fonds für Regionale Entwicklung (EFRE) within the project “Nachhaltige Produktion von Nitril-Industriechemikalien” (Grant no. EFRE-0400138).

Abstract
Chiral N-acyl amino nitriles are important structural motifs in several pharmaceuticals such as Vildagliptin or Saxagliptin. Cyanide-free access to such nitriles is provided by a copper-catalyzed dehydration of oximes, which are readily available by condensation of chiral aldehydes resulting from the chiral pool with hydroxylamine. The application in a cascade process without the need for intermediate purification as well as a demonstrated scalability show the robustness of this methodology.
Key words
aldoximes - cyanide-free nitrile synthesis - dehydration - N-acylaminonitriles - cascade processSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1549-0903.
- Supporting Information (PDF)
Publication History
Received: 22 April 2021
Accepted after revision: 13 July 2021
Accepted Manuscript online:
13 July 2021
Article published online:
23 September 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902
- 2a Villhauer EB. WO2000034241A1, 2000
- 2b Villhauer EB, Brinkman JA, Naderi GB, Burkey BF, Dunning BE, Prasad K, Mangold BL, Russell ME, Hughes TE. J. Med. Chem. 2003; 46: 2774
- 3a Savage SA, Jones GS, Kolotuchin S, Ramrattan SA, Vu T, Waltermire RE. Org. Process Res. Dev. 2009; 13: 1169
- 3b Vu TC, Brzozowski DB, Fox R, Godfrey JD, Hanson RL, Kolotuchin SV, Mazzullo JA, Patel RN, Wang J, Wong K, Yu J, Zhu J, Magnin DR, Augeri DJ, Hamann LG. WO2004052850A2, 2004
- 4 Gröger H. Chem. Rev. 2003; 103: 2795
- 5 Pellegatti L, Sedelmeier J. Org. Process Res. Dev. 2015; 19: 551
- 6 Denton RM, An J, Lindovska P, Lewis W. Tetrahedron 2012; 68: 2899
- 7 Hendrickson JB, Bair KW, Keehn PM. Tetrahedron Lett. 1976; 603
- 8 Shekharappa Roopesh Kumar L, Srinivasulu C, Sureshbabu VV. Int. J. Pept. Res. Ther. 2020; 46: 8440
- 9 Xu J, Gao Y, Li Z, Liu J, Guo T, Zhang L, Wang H, Zhang Z, Guo K. Eur. J. Org. Chem. 2020; 311
- 10 Ding R, Liu Y, Han M, Jiao W, Li J, Tian H, Sun B. J. Org. Chem. 2018; 83: 12939
- 11 Fang C, Li M, Hu X, Mo W, Hu B, Sun N, Jin L, Shen Z. Adv. Synth. Catal. 2016; 358: 1157
- 12 Zhu J, Lee F, Wu J, Kuo C, Shia K. Synlett 2007; 1317
- 13a Chill ST, Mebane RC. Synth. Commun. 2009; 39: 3601
- 13b Fang W.-Y, Qin H.-L. J. Org. Chem. 2019; 84: 5803
- 13c Augustine JK, Bombrun A, Atta RN. Synlett 2011; 2223
- 14 Attanasi O, Palma P, Serra-Zanetti F. Synthesis 1983; 741
- 15 Tambara K, Pantoş GD. Org. Biomol. Chem. 2013; 11: 2466
- 16 Hyodo K, Kitagawa S, Yamazaki M, Uchida K. Chem. Asian J. 2016; 11: 1348
- 17 Ma X.-Y, He Y, Lu T.-T, Lu M. Tetrahedron 2013; 69: 2560
- 18 Xu Y, Jia X, Ma J, Gao J, Xia F, Li X, Xu J. ACS Sustainable Chem. Eng. 2018; 6: 2888
- 19 Rommelmann P, Betke T, Gröger H. Org. Process Res. Dev. 2017; 21: 1521