Subscribe to RSS
DOI: 10.1055/a-1503-7932
20 Years of Forging N-Heterocycles from Acrylamides through Domino/Cascade Reactions
We thank the ‘Fédération de Chimie’: FR CNRS 3038 (INC3M), the Région Normandie and the URCOM laboratory for their financial support.

Abstract
Acrylamides are versatile building blocks that are easily obtained from readily available starting materials. During the last 20 years, these valuable substrates bearing a nucleophilic nitrogen atom and an electrophilic double bond have proven to be efficient domino partners, leading to a wide variety of complex aza-heterocycles of synthetic relevance. In this non-exhaustive review, metal-free and metal-triggered reactions followed by an annulation will be presented; these two approaches allow good modulation of the reactivity of the polyvalent acrylamides.
1 Introduction
2 Metal-Free Annulations
2.1 Domino Reactions Triggered by a Michael Addition
2.2 Domino Reactions Triggered by an Aza-Michael Addition
2.3 Domino Processes Triggered by an Acylation Reaction
2.4 Domino Reactions Triggered by a Baylis–Hillman Reaction
2.5 Cycloadditions and Domino Reactions
2.6 Miscellaneous Domino Reactions
3 Metal-Triggered/Mediated Annulations
3.1 Zinc-Promoted Transformations
3.2 Rhodium-Catalyzed Functionalization/Annulation Cascades
3.3 Cobalt-Catalyzed Functionalization/Annulation Cascades
3.4 Ruthenium-Catalyzed Functionalization/Annulation Cascades
3.5 Iron-Catalyzed Functionalization/Annulation Cascades
3.6 Palladium-Catalyzed Functionalization/Annulation Cascades
3.7 Copper-Catalyzed Transformations
3.8 Transition Metals Acting in Tandem in Domino Processes
4 Radical Cascade Reactions
5 Conclusion
Publication History
Received: 04 December 2020
Accepted after revision: 10 May 2021
Accepted Manuscript online:
10 May 2021
Article published online:
29 June 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Tietze LF, Beifuss U. Angew. Chem., Int. Ed. Engl. 1993; 32: 131
- 2 Evans CS, Davis LO. Molecules 2018; 23: 33
- 3 Chen XY, Li S, Vetica F, Kumar M, Enders D. iScience 2018; 2: 1
- 4 Volla CM. R, Atodiresei I, Rueping M. Chem. Rev. 2014; 114: 2390
- 5 Pellissier H. Chem. Rev. 2013; 113: 442
- 6 Funt LD, Novikov MS, Khlebnikov AF. Tetrahedron 2020; 76: 131415
- 7 El Bouakher A, Martel A, Comesse S. Org. Biomol. Chem. 2019; 17: 8467
- 8 Dhokale RA, Mhaske SB. Synthesis 2018; 50: 1
- 9 Exon JH. J. Toxicol. Environ. Health Part B 2006; 9: 397
- 10 Kissane M, Maguire AR. Chem. Soc. Rev. 2010; 39: 845
- 11a Lacík I, Chovancová A, Uhelská L, Preusser C, Hutchinson RA, Buback M. Macromolecules 2016; 49: 3244
- 11b Southan A, Mateescu M, Hagel V, Bach M, Schuh C, Kleinhans C, Kluger PJ, Tussetschläger S, Nuss I, Haraszti T, Wegner SV, Spatz JP, Boehm H, Laschat S, Tovar GE. M. Macromol. Chem. Phys. 2013; 244: 1865
- 11c Hagel V, Mateescu M, Southan A, Wegner SV, Nuss I, Haraszti T, Kleinhans C, Schuh C, Spatz JP, Kluger PJ, Bach M, Tussetschläger S, Tovar GE. M, Laschat S, Boehm H. Sci. Rep. 2013; 2043
- 11d Mateescu M, Nuss I, Southan A, Messenger H, Wegner SV, Kupka J, Bach M, Tovar GE. M, Boehm H, Laschat S. Synthesis 2014; 46: 1243
- 12a Cocco M, Miglio G, Giorgis M, Garella D, Marini E, Costale A, Regazzoni L, Vistoli G, Orioli M, Massulaha-Ahmed R, Détraz-Durieux I, Groslambert M, Py BF, Bertinaria M. ChemMedChem 2016; 11: 1790
- 12b Elgiushy HR, Hammad SF, Hassan AS, Aboutaleb N, Abouzid KA. M. J. Adv. Pharm. Res. 2018; 2: 221
- 13 Nagao M, Kurebayashi Y, Seto H, Takahashi T, Suzuki T, Hoshino Y, Miura Y. Polym. Chem. 2016; 7: 5920
- 14 Buinauskaite V, Martynaitis V, Mangelinckx S, Kreiza G, De Kimpe N, Šačkus A. Tetrahedron 2012; 68: 9260
- 15 Popović-Dordević JB, Ivanović MD, Kiricojević VD. Tetrahedron Lett. 2005; 46: 2611
- 16 Popović-Djordjević JB, Klaus AS, Žižak ŽS, Matić IZ, Drakulić BJ. J. Enzyme Inhib. Med. Chem. 2016; 31: 915
- 17 For the synthesis of analogous trans-disubstituted piperidine-2,6-diones employing diethyl malonate or ethyl cyanoacetate in the presence of a base, see: Batt DG, Houghton GC, Roderick J, Santella JB, Wacker DA, Welch PK, Orlovsky YI, Wadman EA, Trzaskos JM, Davies P, Decicco CP, Carter PH. Bioorg. Med. Chem. Lett. 2005; 15: 787
- 18 Hızlıateş CG, Gülle S, Ergün Y. J. Heterocycl. Chem. 2016; 53: 249
- 19 Bossa AM, Clissold DW, Mann J, Markson AJ, Thickitt CP. Tetrahedron 1989; 45: 6011
- 20 Corriu RJ. P, Perz R. Tetrahedron Lett. 1985; 26: 1311
- 21 Chuit C, Corriu RJ. P, Perz R, Reye C. Tetrahedron 1986; 42: 2293
- 22 Moore G, Papamicaël C, Levacher V, Bourguignon J, Dupas G. Tetrahedron 2004; 60: 4197
- 23 Moore G, Levacher V, Bourguignon J, Dupas G. Tetrahedron Lett. 2001; 42: 261
- 24 Rai SK, Khanam S, Khanna RS, Tewari AK. RSC Adv. 2014; 4: 44141
- 25 Eissa AM. F. Heterocycl. Commun. 2003; 9: 181
- 26 Khodairy A, Abass M. Chem. Heterocycl. Compd. 2011; 47: 611
- 27 Krauze A, Garalene V, Vitoliij R, Duburs G. Heterocycl. Commun. 2001; 7: 427
- 28 Hammam AE. G, El-Hafez NA. A, Midura WH, Mikołajczyk M. Z. Naturforsch., B: Chem. Sci. 2000; 55: 417
- 29 Hammam AE. F. G, Abd El-Salam OI, Mohamed AM, Hafez NA. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2005; 44: 1887
- 30 Amr AG. E, Mohamed AM, Mohamed SF, Abdel-Hafez NA, Hammam AE. F. G. Bioorg. Med. Chem. 2006; 14: 5481
- 31 Mohareb RM, Mohamed MH. Heteroat. Chem. 2001; 12: 518
- 32 Ammar YA, El-Sharief AM. S, Mohamed YA, Salem MA, Al-Sehemi AG, El-Gaby MS. A. J. Chin. Chem. Soc. 2004; 51: 975
- 33 Ammar YA, Bondock S, Al-Sehemi AG, El-Gaby MS. A, Fouda AM, Thabet HK. Turkish J. Chem. 2011; 35: 893
- 34 Kheder NA, Mabkhot YN, Farag AM. Synth. Commun. 2008; 38: 3170
- 35 Mohareb RM, Ho JZ, Alfarouk FO. J. Chinese Chem. Soc. 2007; 54: 1053
- 36 Alafeefy AM, Alqasoumi SI, Ashour AE, Masand V, Al-Jaber NA, Hadda TB, Mohamed MA. J. Chin. Chem. Soc. 2012; 53: 133
- 37 Abdel-Galil E, Moawad EB, El-Mekabaty A, Said GE. Synth. Commun. 2018; 48: 2083
- 38 Ghorab MM, Al-Said MS. J. Heterocycl. Chem. 2012; 49: 272
- 39 Ghorab MM, Ragab FA, Heiba HI, Soliman AM. Res. Chem. Intermed. 2017; 43: 4657
- 40 Fadda AA, Abdel-Latif E, Fekri A, Mostafa AR. J. Heterocycl. Chem. 2019; 56: 804
- 41 Farag AM, Dawood KM, Elmenoufy HA. Heteroat. Chem. 2004; 15: 508
- 42 Farag AA, Abd-Alrahman SN, Ahmed GF, Ammar RM, Ammar YA, Abbas SY. Arch. Pharm. 2012; 345: 703
- 43 Abdelall MM. Phosphorus, Sulfur Silicon Relat. Elem. 2009; 184: 2208
- 44 Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
- 45 As proof, in a recent comprehensive review on this topic, Chanda and Zhao did not mention a single example involving acrylamide derivatives, see: Chanda T, Zhao JC.-G. Adv. Synth. Catal. 2018; 360: 2
- 46 He Y, Kang T.-R, Liu Q.-Z, Chen L.-M, Tu Y.-L, Liu Y.-J, Chen T.-B, Wang Z.-Q, Liu J, Xie Y.-M, Yang J.-L, He L. Org. Lett. 2013; 15: 4054
- 47 Liang YR, Chen XY, Wu Q, Lin XF. Tetrahedron 2015; 71: 616
- 48 Tominaga Y, Kawabe M, Hosomi A. J. Heterocycl. Chem. 1987; 24: 1325
- 49 Kumar S, Thakur RR, Margal SR, Thomas A. Tetrahedron 2013; 69: 5112
- 50 Dyachenko VD, Bityukova OS, Dyachenko AD. Russ. J. Org. Chem. 2011; 47: 1335
- 51 Shigemitsu Y, Hagimori M, Mizuyama N, Wang BC, Tominaga Y. Dyes Pigm. 2013; 99: 940
- 52 Dumez E, Durand A.-C, Guillaume M, Roger P.-Y, Faure R, Pons J.-M, Herbette G, Dulcère J.-P, Bonne D, Rodriguez J. Chem. Eur. J. 2009; 15: 12470
- 53 Jin J, Qiu FG. Adv. Synth. Catal. 2014; 356: 340
- 54 Champetter P, Castillo-Aguilera O, Taillier C, Brière JF, Dalla V, Oudeyer S, Comesse S. Eur. J. Org. Chem. 2019; 7703
- 55 Tang QG, Cai SL, Wang CC, Lin GQ, Sun XW. Org. Lett. 2020; 22: 3351
- 56 Yokosaka T, Hamajima A, Nemoto T, Hamada Y. Tetrahedron Lett. 2012; 53: 1245
- 57 Chen YK, Yoshida M, MacMillan DW. C. J. Am. Chem. Soc. 2006; 128: 9328
- 58 Faturaci Y, Coşkun N. Turk. J. Chem. 2012; 36: 749 ; and references cited therein
- 59 Oktay K, Polat Kose L, Şendil K, Gültekin MS, Gülçın İ. Med. Chem. Res. 2017; 26: 1619
- 60 Basso A, Banfi L, Riva R. Molecules 2011; 16: 8775
- 61 Basso A, Banfi L, Galatini A, Guanti G, Rastrelli F, Riva R. Org. Lett. 2009; 11: 4068
- 62 Dong Y, Guo Y, Liu J, Zheng G, Wang M. Eur. J. Org. Chem. 2014; 797
- 63 Han X.-D, Wang H.-B, Hu J.-W, Xiong W, Fu J.-P, Zhu R.-G, Deng Z.-Y, Xu G.-L, Li X.-H. Tetrahedron Lett. 2015; 56: 6444
- 64 Ihara M, Kirihara T, Kawaguchi A, Fukumoto K, Kametani T. Tetrahedron Lett. 1984; 25: 4541
- 65 Ihara M, Kirihara T, Kawaguchi A, Tsuruta M, Fukumoto K. J. Chem. Soc., Perkin Trans. 1 1987; 1719
- 66 Toyota M, Komori C, Ihara M. J. Org. Chem. 2000; 65: 7110
- 67 Mekouar K, Génisson Y, Leue S, Greene AE. J. Org. Chem. 2000; 65: 5212
- 68 Takasu K, Nishida N, Ihara M. Tetrahedron Lett. 2003; 44: 7429
- 69 Takasu K, Nishida N, Tomimura A, Ihara M. J. Org. Chem. 2005; 70: 3957
- 70 Kanoh N, Itoh S, Fujita K, Sakanishi K, Sugiyama R, Terajima Y, Iwabuchi Y, Nishimura S, Kakeya H. Chem. Eur. J. 2016; 22: 8586 ; and references cited therein
- 71 Fujita K, Sugiyama R, Nishimura S, Ishikawa N, Arai MA, Ishibashi M, Kakeya H. J. Nat. Prod. 2016; 79: 1877
- 72 Sheibani H, Bernhardt PV, Wentrup C. J. Org. Chem. 2005; 70: 5859
- 73 For a recent study of the regioselectivity of the intramolecular [2+2] cycloaddition reactions of acyl ketenes, see: Zahedijar M, Sheibani H, Saheb V. Synlett 2018; 29: 1836
- 74a Bornemann H, Wentrup C. J. Org. Chem. 2005; 70: 5862
-
74b Note: The regioselectivity was supported by energy calculations indicating that the criss-cross cycloaddition would be favored by steric constraints in the TS.
- 75 Mali PR, Khomane NB, Sridhar B, Meshram HM, Likhar PR. New J. Chem. 2018; 42: 13819
- 76 Chen G, Fu C, Ma S. Org. Lett. 2009; 11: 2900
- 77 Nurkenov OA, Karipova GZ, Seilkhanov TM, Satpaeva ZB, Fazylov SD, Nukhuly A. Russ. J. Gen. Chem. 2019; 89: 1923
- 78 For a recent review on enantioselective metal-catalyzed domino reactions, see: Pellissier H. Adv. Synth. Catal. 2019; 361: 1733
- 79 For a recent review on transition-metal-promoted cascade heterocycle synthesis through C–H functionalization, see: Baccalini A, Faita G, Zanoni G, Maiti D. Chem. Eur. J. 2020; 26: 9749
- 80 Bentz E, Moloney MG, Westaway SM. Synlett 2007; 733
- 81 Shchepin VV, Fotin DV. Russ. J. Org. Chem. 2005; 41: 1011
- 82 Shchepin VV, Silaichev PS, Stepanyan YG, Russkikh NY, Vakhrin MI, Ezhikova MA, Kodess MI. Russ. J. Org. Chem. 2006; 42: 1625
- 83 Kirillov NF, Nikiforova EA, Shurov SN, Slepukhin PA, Vakhrin MI. Russ. J. Gen. Chem. 2012; 82: 1228
- 84 Kirillov NF, Nikiforova EA, Shurov SN. Russ. J. Org. Chem. 2014; 50: 829
- 85 Modern Rhodium-Catalyzed Organic Reactions . Evans PA. Wiley-VCH; Weinheim: 2005
- 86 Rhodium Catalysis, InTopics in Organometallic Chemistry, Vol. 61. Claver C. Springer International Publishing; Switzerland: 2018
- 87 Hyster TK, Rovis T. J. Am. Chem. Soc. 2010; 132: 10565
- 88 Song G, Chen D, Pan CL, Crabtree RH, Li X. J. Org. Chem. 2010; 75: 7487
- 89 Su Y, Zhao M, Han K, Song G, Li X. Org. Lett. 2010; 12: 5462
- 90 Hyster TK, Rovis T. Chem. Sci. 2011; 2: 1606
- 91 Zhou Z, Liu G, Lu X. Org. Lett. 2016; 18: 5668
- 92 Guimond N, Gouliaras C, Fagnou K. J. Am. Chem. Soc. 2010; 132: 6908
- 93 Xu X, Liu Y, Park CM. Angew. Chem. Int. Ed. 2012; 51: 9372
- 94 Xu Y, Li B, Zhang X, Fan X. Adv. Synth. Catal. 2018; 360: 2613
- 95 Ma B, Wu P, Wang X, Wang Z, Lin HX, Dai HX. Angew. Chem. Int. Ed. 2019; 58: 13335
- 96 Saiegh TJ, Chédotal H, Meyer C, Cossy J. Org. Lett. 2019; 21: 8364
- 97 Lee S, Semakul N, Rovis T. Angew. Chem. Int. Ed. 2020; 59: 4965
- 98 Yang W, Dong J, Wang J, Xu X. Org. Lett. 2017; 19: 616
- 99 Baccalini A, Vergura S, Dolui P, Zanoni G, Maiti D. Org. Biomol. Chem. 2019; 17: 10119
- 100 Grigorjeva L, Daugulis O. Angew. Chem. Int. Ed. 2014; 53: 10209
- 101 Lerchen A, Knecht T, Koy M, Daniliuc CG, Glorius F. Chem. Eur. J. 2017; 23: 12149
- 102 Lin C, Shen L. RSC Adv. 2019; 9: 30650
- 103 Grigorjeva L, Daugulis O. Org. Lett. 2014; 16: 4684
- 104 Deng G, Chen J, Sun W, Bian K, Jiang Y, Loh TP. Adv. Synth. Catal. 2018; 360: 3900
- 105 Thrimurtulu N, Dey A, Maiti D, Volla CM. R. Angew. Chem. Int. Ed. 2016; 55: 12361
- 106 Gu ZY, Liu CG, Wang SY, Ji SJ. J. Org. Chem. 2017; 82: 2223
- 107 Ackermann L, Lygin AV, Hofmann N. Org. Lett. 2011; 13: 3278
- 108 Shankar M, Guntreddi T, Ramesh E, Sahoo AK. Org. Lett. 2017; 19: 5665
- 109 Garad DN, Mhaske SB. J. Org. Chem. 2019; 84: 1863
- 110 Srinivas K, Siddiqui SK, Mudaliar JK, Ramana CV. J. Org. Chem. 2019; 84: 5056
- 111 Bauer I, Knölker H. Chem. Rev. 2015; 115: 3170
- 112 Fürstner A. ACS Cent. Sci. 2016; 2: 778
- 113 Matsubara T, Ilies L, Nakamura E. Chem. Asian J. 2016; 11: 380
- 114 Tsuji J. Palladium Reagents and Catalysts: New Perspectives for the 21st Century. John Wiley & Sons; Chichester: 2004
- 115 Palladium-Catalyzed Coupling Reactions: Practical Aspects and Future Developments. Molnar A. Wiley-VCH; Weinheim: 2013
- 116 Battistuzzi G, Bernini R, Cacchi S, De Salve I, Fabrizi G. Adv. Synth. Catal. 2007; 349: 297
- 117 Luong TT. H, Touchet S, Alami M, Messaoudi S. Adv. Synth. Catal. 2017; 359: 1320
- 118 Cherry K, Abarbri M, Parrain JL, Duchêne A. Tetrahedron Lett. 2003; 44: 5791
- 119 Rousset S, Abarbri M, Thibonnet J, Duchêne A, Parrain J.-L. Chem. Commun. 2000; 1987
- 120 Liu Y, Huang Y, Song H, Liu Y, Wang Q. Chem. Eur. J. 2015; 21: 5337
- 121 Inamoto K, Kawasaki J, Hiroya K, Kondo Y, Doi T. Chem. Commun. 2012; 48: 4332
- 122 Deng Y, Gong W, He J, Yu JQ. Angew. Chem. Int. Ed. 2014; 53: 6692
- 123 Xiao C, Wang Z, Lei M, Hu L. Tetrahedron 2017; 73: 204
- 124 Wang W, Peng X, Qin X, Zhao X, Ma C, Tung CH, Xu Z. J. Org. Chem. 2015; 80: 2835
- 125 Chen M.-Y, Pannecoucke X, Jubault P, Besset T. J. Org. Chem. 2019; 84: 13194
- 126 Hegedus LS, Allen GF, Olsen DJ. J. Am. Chem. Soc. 1980; 102: 3583
- 127 Yip K.-T, Yang M, Law K.-L, Zhu N.-Y, Yang D. J. Am. Chem. Soc. 2006; 128: 3130
- 128 Yip KT, Yang D. Chem. Asian J. 2011; 6: 2166
- 129 Lo KY, Ye L, Yang D. Synlett 2017; 28: 1570
- 130 He W, Yip K.-T, Zhu N.-Y, Yang D. Org. Lett. 2009; 11: 5626
- 131 Ramalingan C, Takenaka K, Sasai H. Tetrahedron 2011; 67: 2889
- 132 Du W, Gu Q, Li Y, Lin Z, Yang D. Org. Lett. 2017; 19: 316
- 133 Tian Q, Liu Y, Wang X, Wang X, He W. Eur. J. Org. Chem. 2019; 3850
- 134 Fuller PH, Chemler SR. Org. Lett. 2007; 9: 5477
- 135 Yu M, Zhang Q, Li G, Yuan J, Zhang N, Zhang R, Liang Y, Dong D. Adv. Synth. Catal. 2016; 358: 410
- 136 Ma S, Xie H. Org. Lett. 2000; 2: 3801
- 137 Ma S, Xie H. Tetrahedron 2005; 61: 251
- 138 Huang X, Zhou H, Chen W. J. Org. Chem. 2004; 69: 839
- 139 For previous reports and the concept, see: Panteleev J, Zhang L, Lautens M. Angew. Chem. Int. Ed. 2011; 50: 9089
- 140 For the domino synthesis of aza-dihydrodibenzoxepines, see: Friedman AA, Panteleev J, Tsoung J, Huynh V, Lautens M. Angew. Chem. Int. Ed. 2013; 52: 9755
- 141 Zhang L, Sonaglia L, Stacey J, Lautens M. Org. Lett. 2013; 15: 2128
- 142 Zhang L, Qureshi Z, Sonaglia L, Lautens M. Angew. Chem. Int. Ed. 2014; 53: 13850
- 143 Shi S, Szostak M. Molecules 2017; 22: 2018
- 144 Huang H.-M, Procter DJ. Angew. Chem. Int. Ed. 2017; 56: 14262
- 145 Xuan J, Studer A. Chem. Soc. Rev. 2017; 46: 4329
- 146 Morris SA, Wang J, Zheng N. Acc. Chem. Res. 2016; 49: 1957
- 147 Chen J.-R, Yu X.-Y, Xiao W.-J. Synthesis 2015; 47: 604
- 148 Fuentes N, Kong W, Fernández-Sánchez L, Merino E, Nevado C. J. Am. Chem. Soc. 2015; 137: 964
For the use of acrylamides in the synthesis of polymers employing Michael-type reactions, see: