Synlett 2021; 32(14): 1371-1378
DOI: 10.1055/a-1479-6366
synpacts

Targeting Tryptophan for Tagging through Photoinduced Electron Transfer

Norberto V. Orellana
,
Funding for this work was provided by the Department of Chemistry and by the Wyoming Sensory Biology COBRE program (5P20GM121310-02).


Abstract

The chemical modification of tryptophan (Trp) has been the subject of interest for nearly 100 years, yet the development of modification conditions that exploit the inherent photolability of Trp has remained elusive. With this perspective, we discuss our recently reported method for Trp photobioconjugation that uses N-carbamoyl pyridinium salts to engage Trp in photoinduced electron transfer. We detail our inspiration and rationale, and we place our report in the context of selected prior art in the field.

1 Introduction

2 Light Activation as a Design Principle in Bioconjugation

3 Targeting Tryptophan with Light

4 Reaction Design and Proof of Concept

5 Mechanistic Considerations

6 Establishing Mechanistic Control

7 Conclusions and Outlook



Publication History

Received: 24 March 2021

Accepted after revision: 11 April 2021

Accepted Manuscript online:
11 April 2021

Article published online:
05 May 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Hermanson G. Bioconjugate Techniques, 3rd ed. Elsevier; Amsterdam: 2013
  • 2 Blackman ML, Royzen M, Fox JM. J. Am. Chem. Soc. 2008; 130: 13518
    • 3a Koniev O, Wagner A. Chem. Soc. Rev. 2015; 44: 5495
    • 3b Boutureira O, Bernardes GJ. L. Chem. Rev. 2015; 115: 2174
    • 3c deGruyter JN, Malins LR, Baran PS. Biochemistry 2017; 56: 3863
  • 4 Brotzel F, Mayr H. Org. Biomol. Chem. 2007; 5: 3814
  • 5 Turro NJ, Ramamurthy V, Scaiano JC. Modern Molecular Photochemistry of Organic Molecules . University Science Books; Sausalito: 2010
    • 6a Kotzyba-Hibert F, Kapfer I, Goeldner M. Angew Chem. Int. Ed. 1995; 34: 1296
    • 6b Ge S.-S, Chen B, Wu Y.-Y, Long Q.-S, Zhao Y.-L, Wang P.-Y, Yang S. RSC Adv. 2018; 8: 29428
    • 6c Das J. Chem. Rev. 2011; 111: 4405
  • 7 Herner A, Lin Q. Top. Curr. Chem. 2016; 374: 1

    • For general reviews, see:
    • 8a Bottecchia C, Noel T. Chem. Eur. J. 2019; 25: 26
    • 8b King TA, Kandemir JM, Walsh SJ, Spring DR. Chem. Soc. Rev. 2021; 50: 39

    • For selected examples of aromatic amino acid modification, see:
    • 8c Fancy DA, Kodadek T. Proc. Natl. Acad. Sci. U. S. A. 1999; 96: 6020
    • 8d Kim K, Fancy DA, Carney D, Kodadek T. J. Am. Chem. Soc. 1999; 121: 11896
    • 8e Sato S, Nakamura H. Angew. Chem. Int. Ed. 2013; 52: 8681
    • 8f Ichiishi N, Caldwell JP, Lin M, Zhong W, Zhu X, Streckfuss E, Kim H, Parish CA, Krska SW. Chem. Sci. 2018; 9: 4168−4175
    • 8g Yu Y, Zhang L.-K, Buevich AV, Li G, Tang H, Vachal P, Colletti SL, Shi Z.-C. J. Am. Chem. Soc. 2018; 140: 6797

    • For selected examples of cysteine modification, see:
    • 8h Tyson EL, Niemeyer ZL, Yoon TP. J. Org. Chem. 2014; 79: 1427
    • 8i Vara BA, Li X, Berritt S, Walters CR, Petersson EJ, Molander GA. Chem. Sci. 2018; 9: 336
    • 8j Bottecchia C, Rubens M, Gunnoo SB, Hessel V, Madder A, Noël T. Angew. Chem. Int. Ed. 2017; 56: 12702

    • For carboxylate activation, see:
    • 8k Bloom S, Liu C, Kölmel DK, Qiao JX, Zhang Y, Poss MA, Ewing WR, MacMillan DW. C. Nat. Chem. 2018; 10: 205
    • 8l Garreau M, Le Vaillant F, Waser J. Angew. Chem. Int. Ed. 2019; 58: 8182
    • 9a Harris DT. Biochem. J. 1926; 20: 288
    • 9b Carter CW. Biochem. J. 1928; 22: 575
    • 9c Weil L, Gordon WG, Buchert AR. Arch. Biochem and. Biophys. 1951; 33: 90
    • 9d Weil L, James S, Buchert AR. Arch. Biochem. and Biophys. 1953; 46: 266
    • 10a Rodriguez J, Martinez-Calvo M. Chem. Eur. J. 2020; 26: 9792
    • 10b Wang W, Lorion MM, Shah J, Kapdi AR, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 14700
    • 11a Antos JM, Francis MB. J. Am. Chem. Soc. 2004; 126: 10256
    • 11b Antos JM, McFarland JM, Iavarone AT, Francis MB. J. Am. Chem. Soc. 2009; 131: 6301
    • 11c Ball ZT. Acc. Chem. Res. 2013; 46: 560
    • 11d Popp BV, Ball ZT. J. Am. Chem. Soc. 2010; 132: 6660
    • 11e Ohata J, Ball ZT. J. Am. Chem. Soc. 2017; 139: 12617
    • 12a Seim KL, Obermeyer AC, Francis MB. J. Am. Chem. Soc. 2011; 133: 16970
    • 12b Petersen J, Christensen KE, Nielsen MT, Mortensen KT, Komnatnyy VV, Nielsen TE, Qvortrup K. ACS Comb. Sci. 2018; 20: 344
    • 13a Scoffone E, Fontana A, Rocchi R. Biochemistry 1968; 7: 971
    • 13b Li X, Zhang L, Hall SE, Tam JP. Tetrahedron Lett. 2000; 41: 4069
    • 13c Seki Y, Ishiyama T, Sasaki D, Abe J, Sohma Y, Oisaki K, Kanai M. J. Am. Chem. Soc. 2016; 138: 10798
    • 13d Imiołek M, Karunanithy G, Ng W.-L, Baldwin AJ, Gouverneur VE, Davis BG. J. Am. Chem. Soc. 2018; 140: 1568
    • 13e Wee Kee C, Tack O, Guibbal F, Wilson TC, Isenegger PG, Imolek M, Verhoog S, Tilby M, Boscutti G, Ashworth S, Chupin J, Kashani R, Poh AW. F, Sosabowski JK, Macholl S, Plisson C, Corenlissen B, Willis MC, Passchier J, Davis BG, Gouverneur V. J. Am. Chem. Soc. 2020; 142: 1180
  • 14 Hu J.-J, He P.-Y, Li Y.-M. J. Peptide Sci. 2021; 27: e3286
  • 15 Lakhdar S, Westermaier M, Terrier R, Boubaker T, Ofial AR, Mayr H. J. Org. Chem. 2006; 71: 9088
    • 16a Bent DV, Hayon E. J. Am. Chem. Soc. 1975; 97: 2612
    • 16b Creed D. Photochem. Photobiol. 1984; 39: 577
    • 16c Pattison DI, Rahmanto AS, Davies MJ. Photochem. Photobiol. Sci. 2012; 11: 38
    • 16d Tsentalovich YP, Snytnikova OA, Sagdeev RZ. J. Photochem. Photobiol., A 2004; 162: 371
  • 17 Harriman A. J. Phys. Chem. 1987; 91: 6102
    • 18a Müller P, Yamamoto J, Martin R, Iwai S, Brettel K. Chem. Commun. 2015; 51: 15502
    • 18b Lin C, Top D, Manahan CC, Young MW, Crane BR. Proc. Natl. Acad. Sci. U. S. A. 2018; 115: 3822

      For reviews on pyridinium salt chemistry see:
    • 19a Sowmiah S, Esperança JM. S. S, Rebelo LP. N, Afonso CA. M. Org. Chem. Front. 2018; 5: 453
    • 19b He F.-S, Ye S, Wu J. ACS Catal. 2019; 9: 8943

    • For select examples, see:
    • 19c Klauck FJ. R, James MJ, Glorius F. Angew. Chem. Int. Ed. 2017; 56: 12336
    • 19d Basch CH, Liao J, Xu J, Piane JJ, Watson MP. J. Am. Chem. Soc. 2017; 139: 5313
    • 19e Wu J, He L, Noble A, Aggarwal VK. J. Am. Chem. Soc. 2018; 140: 10700
  • 20 Lorance ED, Kramer WH, Gould IR. J. Am. Chem. Soc. 2004; 126: 14071
  • 21 Tower SJ, Hetcher WJ, Myers TE, Kuehl NJ, Taylor MT. J. Am. Chem. Soc. 2020; 142: 9112
    • 22a Greulich TW, Daniliuc CG, Studer AN. Org. Lett. 2015; 17: 254
    • 22b Marquet J, Moreno-Mañas M, Pacheco P, Prat M. Tetrahedron 1990; 46: 5333
  • 23 Mozziconacci O, Schöneich C. Mol. Pharmaceutics 2014; 11: 3537
  • 24 Forman HJ, Zhang H, Rinna A. Mol. Aspects Med. 2009; 30: 1
    • 26a Abramovitch RA, Becker JM, Chinnasamy P, He X, Pennington W, Sanjivamurthy AR. V. Heterocycles 1989; 28: 623
    • 26b Abramovitch RA, Evertz K, Huttner G, Gibson HH. Jr, Weems HG. J. Chem. Soc., Chem. Commun. 1988; 325
    • 26c Takeuchi H, Hayakawa S, Tanahashi T, Kobayashi A, Adachi T, Higuchi D. J. Chem. Soc., Perkin Trans. 2 1991; 847
  • 27 Falvey DE. ACS Omega 2018; 3: 10418
    • 28a Wu L.-Z, Sheng YB, Xie J.-B, Wang W. J. Mol. Struct. 2008; 882: 101
    • 28b Oliveira Silva C, Petersen SB, Pinto Reis C, Rijo P, Molpeceres J, Vorum H, Neves-Petersen MT. PLoS One 2015; 10: e0144454