Synlett 2021; 32(10): 1039-1043
DOI: 10.1055/a-1479-6005
letter

Synthesis of [6,6,m]-Tricyclic Compounds via [4+2] Cycloaddition with Au or Cu Catalyst

Juyeon Kang
,
Seunghwan Ham
,
Chaehyeon Seong
,
Chang Ho Oh
This work was supported by a grant from the National Research Foundation of Korea (NRF), funded by the Korean Government, through the Center for New Directions in Organic Synthesis (NRF-2021R1A5A6002803).


Abstract

We synthesized [6,6,6]- and [6,6,7]-tricyclic compounds via intramolecular [4+2] cycloaddition by gold or copper catalysts. Substrates for cyclization were prepared by coupling reactions between eight types of diyne and four types of aromatic moieties. We have successfully synthesized eleven tricyclic compounds.

Supporting Information



Publication History

Received: 21 March 2021

Accepted after revision: 11 April 2021

Accepted Manuscript online:
11 April 2021

Article published online:
23 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Bertz SH. J. Am. Chem. Soc. 1981; 103: 3599
  • 2 Lautens M, Klute W, Tam W. Chem. Rev. 1996; 96: 49
  • 3 Denmark SE, Beutner GL. Angew. Chem. Int. Ed. 2008; 47: 1560
  • 4 Wang C, Xi Z. Chem. Soc. Rev. 2007; 36: 1395
  • 5 Sasmal S, Dutta U, Lahiri GK, Maiti D. Chem. Lett. 2020; 49: 1406
  • 6 Becica J, Dobereiner GE. Org. Biomol. Chem. 2019; 17: 2055
    • 7a Chen DY.-K, Ma D. Beilstein J. Org. Chem. 2013; 9: 1192
    • 7b Yuan C, Liu B. Org. Chem. Front. 2018; 5: 106
  • 8 Elsby MR, Baker RT. Chem. Soc. Rev. 2020; 49: 8933
  • 9 Kondo K, Sodeoka M, Shibasaki M. J. Org. Chem. 1995; 60: 4322
  • 10 Majetich G, Liu S, Fang J, Siesel D, Zhang Y. J. Org. Chem. 1997; 62: 6928
    • 12a Saito S, Yamamoto Y. Chem. Rev. 2000; 100: 2901
    • 12b Asao N, Nogami T, Lee S, Yamamoto Y. J. Am. Chem. Soc. 2003; 125: 10921
  • 13 Asao N, Sato K, Menggenbateer Menggenbateer, Yamamoto Y. J. Org. Chem. 2005; 70: 3682
  • 14 Sadowska B, Kuźma Ł, Micota B, Budzyńska A, Wysokińska H, Kłys A, Więckowska-Szakiel M, Różalska B. Microb. Pathog. 2016; 98: 132
  • 15 González MA. Nat. Prod. Rep. 2015; 32: 684
  • 16 González MA. Eur. J. Med. Chem. 2014; 87: 834
  • 17 Wu L, Lu Y, Ding Y, Zhao J, Xu H, Chou G. Nat. Prod. Res. 2019; 33: 2160
  • 18 Xu J, Han Q.-B, Li S.-L, Chen X.-J, Wang X.-N, Zhao Z.-Z, Chen H.-B. Phytochem. Rev. 2013; 12: 341
    • 19a Oh CH, Piao L, Jung J, Kim J. Asian J. Org. Chem. 2016; 5: 1237
    • 19b Park MS, Kim G, Won H, Han JW, Oh CH. Bull. Korean Chem. Soc. 2020; 41: 88
    • 19c Le TQ, Karmakar S, Lee S, Chai U, Le MH, Oh CH. ChemistrySelect 2019; 4: 11926
    • 19d Shin S, Gupta AK, Rhim CY, Oh CH. Chem. Commun. 2005; 4429
  • 20 Kim N, Kim Y, Park W, Sung D, Gupta AK, Oh CH. Org. Lett. 2005; 7: 5289
  • 21 Seong C, Kang J, Chai U, Mac DH, Oh CH. Synlett 2020; 31: 1953
  • 22 Kanwal I, Mujahid A, Rasool N, Rizwan K, Malik A, Ahmad G, Shah SA. A, Rashid U, Nasir NM. Catalysts 2020; 10: 443
  • 23 Procedure for the AuBr3-Catalyzed Cyclization In a sealed tube was added 1a (1.0 equiv, 30.9 mg, 0.10 mmol), AuBr3 (1.3 mg, 3 mol%), and dry 1,2-dichloroethane (0.4 mL) under argon atmosphere. The mixture was then stirred at 80 °C for 2 h. The solvent was removed under reduced pressure to give crude products, which were purified by flash silica gel chromatography using a mixture of ethyl acetate/hexane (1:30) to furnish 1b (24.9 mg, 82% yield, yellow liquid). Procedure for the Cu(OTf)2-Catalyzed Cyclization In a sealed tube was added 1a (1.0 equiv, 34.1 mg, 0.11 mmol), Cu(OTf)2 (2.4 mg, 6 mol%), and dry 1,2-dichloroethane (0.4 mL) under argon atmosphere. The mixture was then stirred at 60 °C for 1 h. The solvent was removed under reduced pressure to give crude products, which were purified by flash silica gel chromatography using a mixture of ethyl acetate/hexane (1:30) to furnish 1b (26.8 mg, 78% yield, yellow liquid). 1H NMR (400 MHz, CDCl3): δ = 9.44 (dt, J = 8.8, 0.9 Hz, 1 H), 7.96 (dd, J = 8.3, 2.4 Hz, 1 H), 7.81 (dd, J = 8.1, 1.6 Hz, 1 H), 7.64 (ddt, J = 8.7, 6.9, 1.7 Hz, 1 H), 7.51 (ddt, J = 8.0, 6.8, 1.2 Hz, 1 H), 7.34 (dd, J = 8.5, 2.4 Hz, 1 H), 3.72–3.65 (m, 8 H), 3.27 (t, J = 1.3 Hz, 2 H). 13C NMR (101 MHz, CDCl3): δ = 195.35, 170.30, 142.05, 135.47, 133.24, 131.17, 129.42, 128.47, 126.81, 126.43, 126.08, 55.00, 53.32, 45.26, 36.78.
  • 24 Saito H, Yorimitsu H. Chem. Lett. 2019; 48: 1019
  • 25 Jõgi A, Mäeorg U. Molecules 2001; 6: 964
  • 26 Sato K, Asao N, Yamamoto Y. J. Org. Chem. 2005; 70: 8977