Synthesis 2021; 53(15): 2517-2544
DOI: 10.1055/a-1437-9761
review

Real Metal-Free C–H Arylation of (Hetero)arenes: The Radical Way

Fabio Bellina


Abstract

Synthetic methodologies involving the formation of carbon–carbon bonds from carbon–hydrogen bonds are of significant synthetic interest, both for efficiency in terms of atom economy and for their undeniable usefulness in late-stage functionalization approaches. Combining these aspects with being metal-free, the radical C–H intermolecular arylation procedures covered by this review represent both powerful and green methods for the synthesis of (hetero)biaryl systems.

1 Introduction

2 Arylation with Arenediazonium Salts and Related Derivatives

2.1 Ascorbic Acid as the Reductant

2.2 Hydrazines as Reductants

2.3 Gallic Acid as the Reductant

2.4. Polyanilines as Reductants

2.5 Chlorpromazine Hydrochloride as the Reductant

2.6 Phenalenyl-Based Radicals as Reductants

2.7 Electrolytic Reduction of Diazonium Salts

2.8 Visible-Light-Mediated Arylation

3 Arylation with Arylhydrazines: Generation of Aryl Radicals Using an Oxidant

4 Arylation with Diaryliodonium Salts

5 Arylation with Aryl Halides

6 Conclusions



Publication History

Received: 02 February 2021

Accepted after revision: 15 March 2021

Accepted Manuscript online:
15 March 2021

Article published online:
15 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Schnürch M, Flasik R, Khan AF, Spina M, Mihovilovic MD, Stanetty P. Eur. J. Org. Chem. 2006; 3283
    • 1b Metal-Catalyzed Cross-Coupling Reactions . de Meijere A, Diederich F. Wiley-VCH; Weinheim: 2004
    • 1c Handbook of Organopalladium Chemistry for Organic Synthesis. Negishi E.-i. John Wiley & Sons; New York: 2002
    • 1d Hassan J, Sevignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev. 2002; 102: 1359
    • 1e Stanforth SP. Tetrahedron 1998; 54: 263
    • 2a Miyaura N. Bull. Chem. Soc. Jpn. 2008; 81: 1535
    • 2b Rossi R, Bellina F, Carpita A. Synthesis 2004; 2419
    • 2c Kotha S, Lahiri K, Kashinath D. Tetrahedron 2002; 58: 9633
    • 2d Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 3a Stille JK. Angew. Chem. Int. Ed. 1986; 25: 508
    • 3b Mitchell TN. J. Organomet. Chem. 1986; 304: 1
    • 3c Farina V, Krishnamurthy V, Scott WJ. Org. React. 1997; 50: 652
    • 3d Mitchell TN. Synthesis 1992; 803
    • 4a Haas D, Hammann JM, Greiner R, Knochel P. ACS Catal. 2016; 6: 1540
    • 4b Knochel P, Singer RD. Chem. Rev. 1993; 93: 2117
    • 4c Negishi E.-i, Hu Q, Huang Z, Wang G, Yin N. Palladium- or Nickel-Catalyzed Cross-Coupling Reactions with Organozincs and Related Organometals. In The Chemistry of Organozinc Compounds. Rappoport Z, Marek I. John Wiley & Sons; Chichester: 2006: 457
    • 4d Menges-Flanagan G, Deitmann E, Gössl L, Hofmann C, Löb P. Org. Process Res. Dev. 2021; 25: 427
    • 5a Hussain I, Singh T. Adv. Synth. Catal. 2014; 356: 1661
    • 5b Rossi R, Bellina F, Lessi M, Manzini C. Adv. Synth. Catal. 2014; 356: 17
    • 5c Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 5d Bonin H, Sauthier M, Felpin F.-X. Adv. Synth. Catal. 2014; 356: 645
    • 5e Rossi R, Lessi M, Manzini C, Marianetti G, Bellina F. Tetrahedron 2016; 72: 1795
    • 5f Bellina F, Rossi R, Lessi M, Manzini C, Marianetti G. Synthesis 2016; 48: 3821
    • 5g Bheeter CB, Chen L, Soulé J.-F, Doucet H. Catal. Sci. Technol. 2016; 6: 2005
    • 5h Gandeepan P, Finger LH, Meyer TH, Ackermann L. Chem. Soc. Rev. 2020; 49: 4254
    • 6a Heterocycles via Cross Dehydrogenative Coupling: Synthesis and Functionalization. Srivastava A, Jana CK. Springer Nature; Singapore: 2019
    • 6b Yang Y, Lan J, You J. Chem. Rev. 2017; 117: 8787
    • 6c Xia J.-B, You S.-L. C–C Bond Formation by Double C–H Activation . In Catalytic Transformations via C–H Activation, Vol. 2, Chap. 2.5. Yu J.-Q. Science of Synthesis; Georg Thieme Verlag; Stuttgart: 2015
    • 6d Hirano K, Miura M. Chem. Commun. 2012; 48: 10704
    • 6e Le Bras J, Muzart J. Chem. Rev. 2011; 111: 1170
    • 6f Ashenhurst JA. Chem. Soc. Rev. 2010; 39: 540
    • 6g Bellina F, Perego LA. Aerobic Oxidative Intermolecular Cross-Coupling and Heck Reactions . In Catalytic Oxidation in Organic Synthesis, , Science of Synthesis. Muñiz K. Georg Thieme Verlag; Stuttgart: 2018
    • 6h Ackermann L. Acc. Chem. Res. 2020; 53: 84
    • 6i Gandeepan P, Muller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
  • 7 Charushin V, Chupakhin O. Metal Free C–H Functionalization of Aromatics: Nucleophilic Displacement of Hydrogen . In Topics in Heterocyclic Chemistry, Vol. 37. Charushin V, Chupakhin O. Springer International Publishing; Switzerland: 2014
    • 8a Duncton MA. J. Med. Chem. Commun. 2011; 2, 1135
    • 8b Hofmann J, Heinrich MR. Tetrahedron Lett. 2016; 57: 4334
    • 8c Gao P, Gu Y.-R, Duan X.-H. Synthesis 2017; 49: 3407
    • 8d Felpin FX, Sengupta S. Chem. Soc. Rev. 2019; 48: 1150
    • 8e Denes F. Chimia 2020; 74: 23
    • 8f Sun X, Dong X, Liu H, Liu Y. Adv. Synth. Catal. 2021; 363: 1527
  • 9 Proctor RS. J, Phipps RJ. Angew. Chem. Int. Ed. 2019; 58: 13666
    • 10a Lim YJ, Kuang Y, Wu J, Yao SQ. Chem. Eur. J. 2021; 27: 3575
    • 10b Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. Chem. Soc. Rev. 2016; 45: 546
    • 10c Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
  • 11 Gomberg M, Bachmann WE. J. Am. Chem. Soc. 1924; 46: 2339
  • 12 Gomberg M, Bachmann WE. Org. Synth. 1928; 8: 42
    • 13a Dou HJ. M, Lynch BM. Tetrahedron Lett. 1965; 6: 897
    • 13b Lynch BM, Chang HS. Tetrahedron Lett. 1964; 5: 2965
    • 13c Lynch BM, Chang HS. Tetrahedron Lett. 1964; 5: 617
  • 14 Rossi R, Lessi M, Manzini C, Marianetti G, Bellina F. Adv. Synth. Catal. 2015; 357: 3777
  • 15 Studer A, Curran DP. Angew. Chem. Int. Ed. 2016; 55: 58
  • 16 Bowman WR, Storey JM. Chem. Soc. Rev. 2007; 36: 1803
  • 17 Chan W.-W, Yu W.-Y. C–C Bond Formation Using Radicals . In Catalytic Transformations via C–H Activation, Science of Synthesis, Vol. 2, Chap. 2.4. Yu J.-Q. Georg Thieme Verlag; Stuttgart: 2015
  • 18 Bamberger E. Chem. Ber. 1895; 28: 403
    • 19a Kühling O. Chem. Ber. 1895; 28: 523
    • 19b Kühling O. Chem. Ber. 1896; 29: 165
    • 20a Rüchardt C, Merz E. Tetrahedron Lett. 1964; 5: 2431
    • 20b Galli C. Chem. Rev. 1988; 88: 765
  • 21 Elks J, Haworth JW, Hey DH. J. Chem. Soc. 1940; 1284
  • 22 Gomberg M, Pernert JC. J. Am. Chem. Soc. 1926; 48: 1372
    • 23a Beadle JR, Korzeniowski SH, Rosenberg DE, Garcia-Slanga BJ, Gokel GW. J. Org. Chem. 1984; 49: 1594
    • 23b Korzeniowski SH, Gokel GW. Tetrahedron Lett. 1977; 18: 3519
    • 23c Gokel GW, Cram DJ. J. Chem. Soc., Chem. Commun. 1973; 481
  • 24 He L, Qiu G, Gao Y, Wu J. Org. Biomol. Chem. 2014; 12: 6965
  • 25 Dahiya A, Sahoo AK, Alam T, Patel BK. Chem. Asian J. 2019; 14: 4454
  • 26 Kharade A, Patil M, Patil M. ChemistrySelect 2017; 2: 1711
  • 27 Elofson RM, Gadallah FF. J. Org. Chem. 1969; 34: 854
  • 28 Fruton JS. J. Biol. Chem. 1934; 105: 79
    • 29a Galli C. Tetrahedron Lett. 1980; 21: 4515
    • 29b Galli C. J. Chem. Soc., Perkin Trans. 2 1982; 1139
  • 30 Obushak ND, Lesyuk AI, Gorak YI, Matiichuk VS. Russ. J. Org. Chem. 2009; 45: 1375
  • 31 Crisóstomo FP, Martin T, Carrillo R. Angew. Chem. Int. Ed. 2014; 53: 2181
  • 32 Sherburn MS. Basic Concepts on Radical Chain Reactions. In Encyclopedia of Radicals in Chemistry, Biology and Materials [Online]. Chatgilialoglu C, Studer A. John Wiley & Sons; Chichester: 2012
  • 33 Shaaban S, Jolit A, Petkova D, Maulide N. Chem. Commun. 2015; 51: 13902
  • 34 Goyal RN, Srivastava AK. Indian J. Chem., Sect. A: Inorg., Bio-Inorg., Phys.,Theor. Anal. Chem. 1995; 34: 506
  • 35 Perretti MD, Monzon DM, Crisostomo FP, Martin VS, Carrillo R. Chem. Commun. 2016; 52: 9036
  • 36 Barreiro SL, Sánchez-Paz V, Gallego MJ. P, Bravo-Díaz C. Helv. Chim. Acta 2008; 91: 21
  • 37 Viehe HG, Janousek Z, Merenyi R, Stella L. Acc. Chem. Res. 2002; 18: 148
  • 38 Letheby H. J. Chem. Soc. 1862; 15: 161
  • 39 MacDiarmid AG, Epstein AJ. Faraday Discuss. Chem. Soc. 1989; 88: 317
  • 40 Amaya T, Hata D, Moriuchi T, Hirao T. Chem. Eur. J. 2015; 21: 16427
  • 41 Hata D, Moriuchi T, Hirao T, Amaya T. Chem. Eur. J. 2017; 23: 7703
  • 42 Gowda H. Talanta 1966; 13: 1375
  • 43 Gowda HS, Ahmed SA. Talanta 1979; 26: 233
  • 44 Kumar M, Sharma S, Sil P, Kushwaha M, Mayor S, Vishwakarma RA, Singh PP. Eur. J. Org. Chem. 2019; 3591
    • 45a Dwivedi PC, Rao KG, Bhat SN, Rao CN. R. Spectrochim. Acta, Part A 1975; 31: 129
    • 45b Fels IG, Kaufman M. Nature 1959; 183: 1392
    • 45c Forrest IS, Forrest FM, Berger M. Biochim. Biophys. Acta 1958; 29: 441
    • 45d Cavanaugh DJ. Science 1957; 125: 1040
    • 46a Reid DH. Q. Rev. Chem. Soc. 1965; 19: 274
    • 46b Uchida K, Kubo T. J. Synth. Org. Chem. Jpn. 2016; 74: 1069
  • 47 Kubo T. Open-Shell π-Conjugated Hydrocarbons. In Organic Redox Systems: Synthesis, Properties, and Applications. Nishinaga T. John Wiley & Sons; Hoboken: 2015: 287
  • 48 Ahmed J, Sreejyothi P, Vijaykumar G, Jose A, Raj M, Mandal SK. Chem. Sci. 2017; 8: 7798
  • 49 Ahmed J, Chakraborty S, Jose A, Sreejyothi P, Mandal SK. J. Am. Chem. Soc. 2018; 140: 8330
    • 50a Beil SB, Pollok D, Waldvogel SR. Angew. Chem. Int. Ed. 2021; 60 in press, DOI: 10.1002/anie.202014544.
    • 50b Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 50c Karkas MD. Chem. Soc. Rev. 2018; 47: 5786
    • 50d Wiebe A, Gieshoff T, Mohle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594
    • 50e Sauermann N, Meyer TH, Qiu Y, Ackermann L. ACS Catal. 2018; 8: 7086
    • 50f Pollok D, Waldvogel SR. Chem. Sci. 2020; 11: 12386
    • 50g Waldvogel SR, Lips S, Selt M, Riehl B, Kampf CJ. Chem. Rev. 2018; 118: 6706
  • 51 Hata D, Tobisu M, Amaya T. Bull. Chem. Soc. Jpn. 2018; 91: 1749
  • 52 Hari DP, Schroll P, Konig B. J. Am. Chem. Soc. 2012; 134: 2958
  • 53 Srivastava V, Singh PP. RSC Adv. 2017; 7: 31377
  • 54 Feng Y.-S, Bu X.-S, Huang B, Rong C, Dai J.-J, Xu J, Xu H.-J. Tetrahedron Lett. 2017; 58: 1939
  • 55 Rybicka-Jasińska K, König B, Gryko D. Eur. J. Org. Chem. 2017; 2104
  • 56 Zhang S, Tang Z, Bao W, Li J, Guo B, Huang S, Zhang Y, Rao Y. Org. Biomol. Chem. 2019; 17: 4364
  • 57 Maity P, Kundu D, Ranu BC. Eur. J. Org. Chem. 2015; 1727
    • 58a Martin-Matute B, Nevado C, Cardenas DJ, Echavarren AM. J. Am. Chem. Soc. 2003; 125: 5757
    • 58b Panteleev J, Geyer K, Aguilar-Aguilar A, Wang L, Lautens M. Org. Lett. 2010; 12: 5092
  • 59 Lee J, Hong B, Lee A. J. Org. Chem. 2019; 84: 9297
    • 60a Abramovitch RA, Saha JG. Tetrahedron 1965; 21: 3297
    • 60b Haworth JW, Heilbron IM, Hey DH. J. Chem. Soc. 1940; 358
    • 61a Pratsch G, Wallaschkowski T, Heinrich MR. Chem. Eur. J. 2012; 18: 11555
    • 61b Wetzel A, Ehrhardt V, Heinrich MR. Angew. Chem. Int. Ed. 2008; 47: 9130
  • 62 Zollinger H. Diazo Chemistry I: Aromatic and Heteroaromatic Compounds. Wiley-VCH; Weinheim: 1994
  • 63 Hofling SB, Bartuschat AL, Heinrich MR. Angew. Chem. Int. Ed. 2010; 49: 9769
  • 64 Hofmann J, Jasch H, Heinrich MR. J. Org. Chem. 2014; 79: 2314
  • 65 Jasch H, Scheumann J, Heinrich MR. J. Org. Chem. 2012; 77: 10699
  • 66 Taniguchi T, Imoto M, Takeda M, Matsumoto F, Nakai T, Mihara M, Mizuno T, Nomoto A, Ogawa A. Tetrahedron 2016; 72: 4132
  • 67 Li Y, Liu W, Kuang C. Chem. Commun. 2014; 50: 7124
    • 68a Wang X, Studer A. Acc. Chem. Res. 2017; 50: 1712
    • 68b Stuart DR. Chem. Eur. J. 2017; 23: 15852
    • 68c Novák Z, Aradi K, Tóth B, Tolnai G. Synlett 2016; 27: 1456
    • 68d Yusubov MS, Maskaev AV, Zhdankin VV. ARKIVOC 2011; (i): 370
    • 68e Merritt EA, Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052
  • 69 Morimoto K. Chem. Pharm. Bull. 2019; 67: 1259
  • 70 Ackermann L, Dell’Acqua M, Fenner S, Vicente R, Sandmann R. Org. Lett. 2011; 13: 2358
  • 71 Seidl TL, Sundalam SK, McCullough B, Stuart DR. J. Org. Chem. 2016; 81: 1998
  • 72 Henderson RK, Hill AP, Redman AM, Sneddon HF. Green Chem. 2015; 17: 945
    • 73a Mayr H, Kempf B, Ofial AR. Acc. Chem. Res. 2003; 36: 66
    • 73b Souissi S, Gabsi W, Echaieb A, Roger J, Hierso J.-C, Fleurat-Lessard P, Boubaker T. RSC Adv. 2020; 10: 28635
  • 74 Zhu Y, Bauer M, Ploog J, Ackermann L. Chem. Eur. J. 2014; 20: 13099
  • 75 Wen J, Zhang R.-Y, Chen S.-Y, Zhang J, Yu XQ. J. Org. Chem. 2012; 77: 766
  • 76 Lubinkowski JJ, Gimenez Arrieche C, McEwen WE. J. Org. Chem. 1980; 45: 2076
    • 77a Emery KJ, Tuttle T, Kennedy AR, Murphy JA. Tetrahedron 2016; 72: 7875
    • 77b Yanagisawa S, Itami K. ChemCatChem 2011; 3: 827
    • 77c Studer A, Curran DP. Angew. Chem. Int. Ed. 2011; 50: 5018
  • 78 Yanagisawa S, Ueda K, Taniguchi T, Itami K. Org. Lett. 2008; 10: 4673
  • 79 Liu W, Cao H, Zhang H, Zhang H, Chung KH, He C, Wang H, Kwong FY, Lei A. J. Am. Chem. Soc. 2010; 132: 16737
  • 80 Sun CL, Li H, Yu DG, Yu M, Zhou X, Lu XY, Huang K, Zheng SF, Li BJ, Shi ZJ. Nat. Chem. 2010; 2: 1044
  • 81 Shirakawa E, Itoh K, Higashino T, Hayashi T. J. Am. Chem. Soc. 2010; 132: 15537
  • 82 Dewanji A, Murarka S, Curran DP, Studer A. Org. Lett. 2013; 15: 6102
    • 83a Schmidt LC, Argüello JE, Penenory AB. J. Org. Chem. 2007; 72: 2936
    • 83b Rossi RA, Pierini AB, Penenory AB. Chem. Rev. 2003; 103: 71
  • 84 Budén ME, Guastavino JF, Rossi RA. Org. Lett. 2013; 15: 1174
  • 85 Xu Z, Gao L, Wang L, Gong M, Wang W, Yuan R. ACS Catal. 2014; 5: 45