Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2021; 32(06): 587-592
DOI: 10.1055/a-1323-2389
DOI: 10.1055/a-1323-2389
letter
Enantioselective Nucleophilic Aromatic Substitution Reaction of Azlactones to Synthesize Quaternary α-Amino Acid Derivatives
Authors
We thank the National Natural Science Foundation of China (21625205 and U19A2014) for financial support.

Abstract
An asymmetric organocatalytic nucleophilic aromatic substitution reaction of azlactones with electron-deficient aryls was established. A variety of α-aryl α-alkyl α-amino acid esters and peptides were obtained in decent yields and stereoselectivities. A new bifunctional catalytic mode involving charge-transfer interaction and hydrogen bonding is proposed to explain the enantioselectivity.
Key words
amino acid esters - peptides - asymmetric catalysis - SNAr reaction - electron donor–accepter complexes - organocatalysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1323-2389.
- Supporting Information (PDF)
Publication History
Received: 20 October 2020
Accepted after revision: 25 November 2020
Accepted Manuscript online:
25 November 2020
Article published online:
16 December 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Venkatraman J, Shankaramma SC, Balaram P. Chem. Rev. 2001; 101: 3131
- 1b Licini G, Prins LJ, Scrimin P. Eur. J. Org. Chem. 2005; 2005: 969
- 1c Cardillo G, Gentilucci L, Tolomelli A. Mini-Rev. Med. Chem. 2006; 6: 293
- 1d Hedges JB, Ryan KS. Chem. Rev. 2020; 120: 3161
- 2 Cativiela C, Ordóñez M, Viveros-Ceballos JL. Tetrahedron 2020; 76: 130875
- 3a Johansson CC. C, Colacot TJ. Angew. Chem. Int. Ed. 2010; 49: 676
- 3b Hao Y.-J, Hu X.-S, Zhou Y, Zhou J, Yu J.-S. ACS Catal. 2020; 10: 955
- 4a Tomohara K, Yoshimura T, Hyakutake R, Yang P, Kawabata T. J. Am. Chem. Soc. 2013; 135: 13294
- 4b Atkinson RC, Fernández-Nieto F, Roselló MJ, Clayden J. Angew. Chem. Int. Ed. 2015; 54: 8961
- 4c Kasamatsu K, Yoshimura T, Mandi A, Taniguchi T, Monde K, Furuta T, Kawabata T. Org. Lett. 2017; 19: 352
- 4d Costil R, Fernández-Nieto F, Atkinson RC, Clayden J. Org. Biomol. Chem. 2018; 16: 2757
- 4e Leonard DJ, Ward JW, Clayden J. Nature 2018; 562: 105
- 4f Mambrini A, Gori D, Kouklovsky C, Kim H, Yoshida J.-i, Alezra V. Eur. J. Org. Chem. 2018; 6754
- 5a Bunnett JF, Zahler RE. Chem. Rev. 1951; 49: 273
- 5b Terrier F. Modern Nucleophilic Aromatic Substitution . Wiley-VCH; Weinheim: 2013
- 5c Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds. Mortier J. Wiley-VCH; Weinheim: 2016
- 5d Asymmetric Dearomatization Reactions . You SL. Wiley-VCH; Weinheim: 2016
- 6a Shirakawa S, Yamamoto K, Tokuda T, Maruoka K. Asian J. Org. Chem. 2014; 3: 433
- 6b Shirakawa S, Yamamoto K, Maruoka K. Angew. Chem. Int. Ed. 2015; 54: 838
- 7 Li G, Sun W, Li J, Jia F, Hong L, Wang R. Chem. Commun. 2015; 51: 11280
- 8a D’Anello M, Erba E, Gelmi ML, Pocar D. Chem. Ber. 1988; 121: 67
- 8b Teegardin KA, Weaver JD. Chem. Commun. 2017; 53: 4771
- 8c Marra IF. S, de Castro PP, Amarante GW. Eur. J. Org. Chem. 2019; 5830
- 8d Wang Y.-N, Xiong Q, Lu LQ, Zhang Q.-L, Wang Y, Lan Y, Xiao W.-J. Angew. Chem. Int. Ed. 2019; 58: 11013
- 8e Ma C, Sheng F.-T, Wang H.-Q, Deng S, Zhang Y.-C, Jiao Y.-C, Tan W, Shi F. J. Am. Chem. Soc. 2020; 142: 15686
- 8f Xie M.-S, Huang B, Li N, Tian Y, Wu X.-X, Deng Y, Qu G.-R, Guo H.-M. J. Am. Chem. Soc. 2020; 142: 19226
- 9a Bella M, Kobbelgaard S, Jørgensen KA. J. Am. Chem. Soc. 2005; 127: 3670
- 9b Bella M, Kobbelgaard S, Jørgensen KA. J. Org. Chem. 2006; 71: 4980
- 9c Armstrong RJ, Smith MD. Angew. Chem. Int. Ed. 2014; 53: 12822
- 9d Shirakawa S, Koga K, Tokuda T, Yamamoto K, Maruoka K. Angew. Chem. Int. Ed. 2014; 53: 6220
- 9e Ding Q, Wang Q, He H, Cai Q. Org. Lett. 2017; 19: 1804
- 9f Cardenas MM, Toenjes ST, Nalbandian CJ, Gustafson JL. Org. Lett. 2018; 20: 2037
- 9g Kondoh A, Aoki T, Terada M. Chem. Eur. J. 2018; 24: 13110
- 10a Dong S, Liu X, Chen X, Mei F, Zhang Y, Gao B, Lin L, Feng X. J. Am. Chem. Soc. 2010; 132: 10650 ; corrigendum: J. Am. Chem. Soc. 2011, 133, 13761
- 10b Dong S, Liu X, Zhang YL, Lin L, Feng X. Org. Lett. 2011; 13: 5060
- 10c Dong S, Liu X, Zhu Y, He P, Lin L, Feng X. J. Am. Chem. Soc. 2013; 135: 10026 ; corrigendum: J. Am. Chem. Soc. 2013, 135, 15964
- 10d Yu K, Liu X, Lin X, Lin L, Feng X. Chem. Commun. 2015; 51: 14897
- 10e Zhang Q, Guo S, Yang J, Yu KR, Feng X, Lin L, Liu X. Org. Lett. 2017; 19: 5826
- 10f Ruan S, Lin X, Xie L, Lin L, Feng X, Liu X. Org. Chem. Front. 2018; 5: 32
- 10g Xie L, Dong S, Zhang Q, Feng X, Liu X. Chem. Commun. 2019; 55: 87
- 11 CCDC 1973876 contains the supplementary crystallographic data for compound 3d. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 12a Dong S, Feng X, Liu X. Chem. Soc. Rev. 2018; 47: 8525
- 12b Chou H.-C, Leow D, Tan C.-H. Chem. Asian J. 2019; 14: 3803
- 13 Chiral Guanidine-Catalyzed Asymmetric SNAr Reaction; General Procedure A dry tube was charged with G-3 (8.3 mg, 15 mol%), K3PO4·H2O (116 mg, 0.5 mmol), and the appropriate fluoroarene 2 (0.2 mmol). Under a N2 atmosphere, CHCl3 (0.3 mL) was added, and the mixture was stirred at 35 °C for 30 min, then cooled to –60 °C for 10 min. The appropriate azlactone 1 (0.1 mmol) was added with stirring, and the mixture was stirred at –60 °C for about 72 h until 1 was fully consumed (TLC). MeOH (1 mL) and DAMP (1.2 mg, 10 mol%) were then added, and the mixture was stirred for about 15 mins at 35 °C. The product was purified by flash column chromatography [silica gel, PE–DCM (1:1)]. Methyl α-(2,4-dinitrophenyl)-N-(4-Fluorobenzoyl)-l-phenylalaninate (3b) White solid; yield: 39.7 mg (85%; 89% ee); mp 186–188 °C; [α]D 16 –26.4 (c 0.664, CH2Cl2). UPC2 (chiral IB-3 column, CO2 /MeOH = 90:10, flow rate 1.5 mL/min, λ = 254 nm): t R (minor) = 4.1 min; t R (major) = 5.3 min. 1H NMR (400 MHz, CDCl3): δ = 8.57–8.51 (m, 1 H), 8.46–8.40 (m, 1 H), 8.29–8.21 (m, 1 H), 7.60–7.51 (m, 2 H), 7.32–7.19 (m, 3 H), 7.14–6.93 (m, 5 H), 4.33 (d, J = 18.8 Hz, 1 H), 3.85 (s, 3 H), 3.75 (d, J = 18.8 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 169.4, 166.4 (d, J = 251.7 Hz), 165.6, 148.3, 147.1, 140.3, 133.4, 130.8, 130.1, 129.4 (d, J = 9.1 Hz), 129.2 ( d, J = 3.2 Hz), 128.5, 128.0, 126.4, 119.8, 116.0 (d, J = 22.1 Hz), 64.0, 53.8, 40.5. 19F NMR (376 MHz, CDCl3): δ = –106.6. ESI-HRMS: m/z [M + H]+ calcd for C23H19FN3O7 = 468.1202; found: 468.1191.
For selected examples of asymmetric syntheses of quaternary amino acid derivatives from amino acid derivatives by ‘chiral memory’, see:
For selected reviews, see