Dtsch Med Wochenschr 2021; 146(08): 518-524
DOI: 10.1055/a-1267-5219
Dossier

Volumenmanagement bei chronischen Nierenerkrankungen

Volume Management in Chronic kidney disease
Ralph Kettritz
,
Stephan Henrik Schirmer
,
Gunnar Henrik Heine

Das Verständnis der Regulationsmechanismen ist bei chronischer Niereninsuffizienz von grundlegender Bedeutung, da sie die Menge an Natrium und freiem Wasser im Körper beeinflussen. Die Natriumrestriktion spielt bei der Therapie eine zentrale Rolle. Diuretika sind der medikamentöse Standard, aber seit einiger Zeit rücken SGLT-2-Inhibitoren und Mineralkortikoid-Rezeptorantagonisten (MRA) immer weiter in den Fokus.

Abstract

Understanding the (patho-)physiology of volume regulation and osmoregulation is fundamental to guide patient advice and therapy in chronic kidney disease (CKD). Volume regulation primarily impacts the amount of sodium in the body, and it mainly affects the extracellular space, while osmoregulation primarily impacts the amount of free water, and it affects both the intra- and extracellular space. The kidneys control water and sodium homeostasis both through their sensor (e. g. tubuloglomerular feedback) and regulator systems (e. g. sodium reabsorption). Many CKD patients are advised by non-nephrologists to a high fluid intake, although they often do not require a daily intake of more than 1.5 litres. Many CKD patients are hypervolemic, and sodium restriction is of key importance in patients’ effort to utilize lifestyle changes as therapeutic means. Pharmacologically, (particularly loop) diuretics are the basis of therapy, increasing sodium excretion. Recent developments shift the focus towards classes of drugs ameliorating prognosis in CKD: sodium-glucose linked transporter 2 (SGLT2) inhibitors have proven beneficial in heart and renal failure – by sodium and fluid excretion, among others; additionally, a novel mineralocorticoid receptor antagonist (MRA), finerenone, was recently shown to improve prognosis in CKD.



Publication History

Article published online:
14 April 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 MacHnik A, Neuhofer W, Jantsch J. et al Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med 2009; 15: 545-552 . doi:10.1038/nm.1960
  • 2 Titze J, Dahlmann A, Lerchl K. et al Spooky sodium balance. Kidney Int 2014; 85: 759-767 . doi:10.1038/ki.2013.367
  • 3 Thurau K, Boylan JW. Acute renal success. The unexpected logic of oliguria in acute renal failure. Am J Med 1976; 61: 308-315 . doi:10.1016/0002-9343(76)90365-X
  • 4 Much WE, Wilcox CS. Disorders of body fluids, sodium and potassium in chronic renal failure. Am J Med 1982; 72: 536-550 . doi:10.1016/0002-9343(82)90523-X
  • 5 Kurtz TW, Al-Bander HA, Morris RC. Salt-Sensitive Essential Hypertension in Men. N Engl J Med 1987; 317: 1043-1048 . doi:10.1056/nejm198710223171702
  • 6 Hooton TM, Vecchio M, Iroz A. et al Effect of Increased Daily Water Intake in Premenopausal Women with Recurrent Urinary Tract Infections: A Randomized Clinical Trial. JAMA Intern Med 2018; 178: 1509-1515 . doi:10.1001/jamainternmed.2018.4204
  • 7 Morgan MSC, Pearle MS. Medical management of renal stones. BMJ 2016; 352 DOI: 10.1136/bmj.i52.
  • 8 Sontrop JM, Huang SH, Garg AX. et al Effect of increased water intake on plasma copeptin in patients with chronic kidney disease: results from a pilot randomised controlled trial. BMJ Open 2015; 5: e008634 . doi:10.1136/bmjopen-2015-008634
  • 9 Bergmann C, Guay-Woodford LM, Harris PC. et al. Polycystic kidney disease. Nat Rev Dis Prim 2018; 4 (01) DOI: 10.1038/s41572-018-0047-y.
  • 10 Torres VE, Chapman AB, Devuyst O. et al Tolvaptan in Patients with Autosomal Dominant Polycystic Kidney Disease. N Engl J Med 2012; 367: 2407-2418 . doi:10.1056/nejmoa1205511
  • 11 Torres VE, Chapman AB, Devuyst O. et al Tolvaptan in Later-Stage Autosomal Dominant Polycystic Kidney Disease. N Engl J Med 2017; 377: 1930-1942 . doi:10.1056/nejmoa1710030
  • 12 Amro OW, Paulus JK, Noubary F. et al Low-Osmolar Diet and Adjusted Water Intake for Vasopressin Reduction in Autosomal Dominant Polycystic Kidney Disease: A Pilot Randomized Controlled Trial. Am J Kidney Dis 2016; 68: 882-891 . doi:10.1053/j.ajkd.2016.07.023
  • 13 El-Damanawi R, Lee M, Harris T. et al High water vs. ad libitum water intake for autosomal dominant polycystic kidney disease: A randomized controlled feasibility trial. QJM 2020; 113: 258-265 . doi:10.1093/qjmed/hcz278
  • 14 Slagman MCJ, Waanders F, Hemmelder MH. et al. Moderate dietary sodium restriction added to angiotensin converting enzyme inhibition compared with dual blockade in lowering proteinuria and blood pressure: Randomised controlled trial. BMJ 2011; 343 DOI: 10.1136/bmj.d4366.
  • 15 Vogt L, Waanders F, Boomsma F. et al Effects of dietary sodium and hydrochlorothiazide on the antiproteinuric efficacy of losartan. J Am Soc Nephrol 2008; 19: 999-1007 . doi:10.1681/ASN.2007060693
  • 16 Kwakernaak AJ, Krikken JA, Binnenmars SH. et al Effects of sodium restriction and hydrochlorothiazide on RAAS blockade efficacy in diabetic nephropathy: A randomised clinical trial. Lancet Diabetes Endocrinol 2014; 2: 385-395 . doi:10.1016/S2213-8587(14)70030-0
  • 17 McMahon EJ, Bauer JD, Hawley CM. et al A randomized trial of dietary sodium restriction in CKD. J Am Soc Nephrol 2013; 24: 2096-2103 . doi:10.1681/ASN.2013030285
  • 18 Middleton JP, Lehrich RW. Prescriptions for dietary sodium in patients with chronic kidney disease: How will this shake out?. Kidney Int 2014; 86: 457-459 . doi:10.1038/ki.2014.124
  • 19 O’Donnell M, Mente A, Alderman MH. et al Salt and cardiovascular disease: insufficient evidence to recommend low sodium intake. Eur Heart J 2020; 41: 3363-3373 . doi:10.1093/eurheartj/ehaa586
  • 20 Büttner S, Koch A, Pfeilschifter J. Diuretic Therapy. Dtsch Med Wochenschr 2019; 144: 387-392 . doi:10.1055/a-0661-4426
  • 21 Brater DC. Diuretic Therapy. N Engl J Med 1998; 339: 387-395 . doi:10.1056/NEJM199808063390607
  • 22 Mullens W, Damman K, Harjola VP. et al The use of diuretics in heart failure with congestion — a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2019; 21: 137-155 . doi:10.1002/ejhf.1369
  • 23 Anisman SD, Erickson SB, Morden NE. How to prescribe loop diuretics in oedema. BMJ 2019; 364 DOI: 10.1136/bmj.l359.
  • 24 Mordi NA, Mordi IR, Singh JS. et al Renal and Cardiovascular Effects of SGLT2 Inhibition in Combination with Loop Diuretics in Patients with Type 2 Diabetes and Chronic Heart Failure: The RECEDE-CHF Trial. Circulation 2020; 142: 1713-1724 . doi:10.1161/CIRCULATIONAHA.120.048739
  • 25 Wanner C, Lachin JM, Inzucchi SE. et al Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus, established cardiovascular disease, and chronic kidney disease. Circulation 2018; 137: 119-129 . doi:10.1161/CIRCULATIONAHA.117.028268
  • 26 Kalogeropoulos AP, Thankachen J, Butler J. et al Diuretic and renal effects of spironolactone and heart failure hospitalizations: a TOPCAT Americas analysis. Eur J Heart Fail 2020; 22: 1600-1610 . doi:10.1002/ejhf.1917
  • 27 Bakris GL, Agarwal R, Anker SD. et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N Engl J Med 2020; 383 DOI: 10.1056/nejmoa2025845.