Appl Clin Inform 2014; 05(02): 512-526
DOI: 10.4338/ACI-2014-04-RA-0039
Research Article – ehealth2014 special topic
Schattauer GmbH

Structuring Clinical Workflows for Diabetes Care

An Overview of the OntoHealth Approach
M. Schweitzer
1   UMIT – University for Health Sciences, Medical Informatics and Technology, Research Division for eHealth and Telemedicine, Hall in Tirol, Austria
N. Lasierra
2   University of Innsbruck, STI – Semantic Technology Institute, Innsbruck, Austria
S. Oberbichler
1   UMIT – University for Health Sciences, Medical Informatics and Technology, Research Division for eHealth and Telemedicine, Hall in Tirol, Austria
I. Toma
2   University of Innsbruck, STI – Semantic Technology Institute, Innsbruck, Austria
A. Fensel
2   University of Innsbruck, STI – Semantic Technology Institute, Innsbruck, Austria
A. Hoerbst
1   UMIT – University for Health Sciences, Medical Informatics and Technology, Research Division for eHealth and Telemedicine, Hall in Tirol, Austria
› Author Affiliations
Further Information

Publication History

Received: 07 April 2014

Accepted: 30 April 2014

Publication Date:
21 December 2017 (online)


Background: Electronic health records (EHRs) play an important role in the treatment of chronic diseases such as diabetes mellitus. Although the interoperability and selected functionality of EHRs are already addressed by a number of standards and best practices, such as IHE or HL7, the majority of these systems are still monolithic from a user-functionality perspective. The purpose of the OntoHealth project is to foster a functionally flexible, standards-based use of EHRs to support clinical routine task execution by means of workflow patterns and to shift the present EHR usage to a more comprehensive integration concerning complete clinical workflows.

Objectives: The goal of this paper is, first, to introduce the basic architecture of the proposed OntoHealth project and, second, to present selected functional needs and a functional categorization regarding workflow-based interactions with EHRs in the domain of diabetes.

Methods: A systematic literature review regarding attributes of workflows in the domain of diabetes was conducted. Eligible references were gathered and analyzed using a qualitative content analysis. Subsequently, a functional workflow categorization was derived from diabetes-specific raw data together with existing general workflow patterns.

Results: This paper presents the design of the architecture as well as a categorization model which makes it possible to describe the components or building blocks within clinical workflows. The results of our study lead us to identify basic building blocks, named as actions, decisions, and data elements, which allow the composition of clinical workflows within five identified contexts.

Conclusions: The categorization model allows for a description of the components or building blocks of clinical workflows from a functional view.

Citation: Schweitzer M, Lasierra N, Oberbichler S, Toma I, Fensel A, Hoerbst A. Structuring clinical workflows for diabetes care: An overview of the OntoHealth approach. Appl Clin Inf 2014; 5: 512–526

  • References

  • 1 Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ. et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants. Lancet 2011; 378 9785 31-40.
  • 2 American Diabetes Association.. Economic costs of diabetes in the U. S. in 2012. Diabetes Care 2013; 36 (Suppl. 04) 1033-1046.
  • 3 Waegemann C. EHR vs. CPR vs. EMR. Healthc Informatics Online 2003; 1: 1-4.
  • 4 IHE International.. About IHE. Available from:
  • 5 EN 13606 Association.. CEN/ISO EN13606. Available from:
  • 6 openEHR Foundation.. What is openEHR? [cited 2014 Jan 22]. Available from:
  • 7 Dolin R, Alschuler L, Boyer S, Beebe C, Behlen FM, Biron PV. et al. HL7 clinical document architecture, release 2. J Am Med Informatics Assoc 2006; 13 (Suppl. 01) 30-39.
  • 8 ELGA GmbH.. ELGA –die elektronische Gesundheitsakte. [cited 2014 Mar 10]. Available from:
  • 9 epSOS Project.. epSOS. [cited 2014 Mar 10]. Available from:
  • 10 EHR4CR –Electronic Health Records for Clinical Research.. [cited 2014 Mar 25]. Available from:
  • 11 UMIT –University for Health Sciences Medical Informatics and Technology, STI –Semantic Technology Insitute at University of Innsbruck. OntoHealth project. [cited 2014 Jan 23]. Available from: http://www.
  • 12 Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 2010; 87 (Suppl. 01) 4-14.
  • 13 D’Avolio L, Ferguson R, Goryachev S, Woods P, Sabin T, O’Neil J. et al. Implementation of the Department of Veterans Affairs’ first point-of-care clinical trial. J Am Med Informatics Assoc 2012; 19 (Suppl. 01) 170-176.
  • 14 Bowens FM, Frye PA, Jones WA. Health information technology: integration of clinical workflow into meaningful use of electronic health records. Perspect Heal Inf Manag 2010; 7: 1d.
  • 15 Binder W, Bonetta D, Pautasso C, Peternier A, Milano D, Schuldt H. et al. Towards Self-Organizing Service-Oriented Architectures. IEEE World Congress on Services. IEEE; 2011: 115-121.
  • 16 Dustdar S, Schreiner W. A survey on web services composition. Int J Web Grid Serv 2005; 1 (Suppl. 01) 1-30.
  • 17 Fensel D, Facca FM, Simperl E, Toma I. Semantic Web Services. Springer 2011
  • 18 Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA. et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med 2009; 6 (Suppl. 07) 1-28.
  • 19 Mayring P. Qualitative Inhaltsanalyse: Grundlagen und Techniken. 8th ed. Weinheim und Basel: Beltz Verlag; 2000
  • 20 Bortz J, Döring N. Forschungsmethoden und Evaluation: Für Human- und Sozialwissenschaftler. 3rd ed. Berlin, Heidelberg, New York: Springer-Verlag; 2003
  • 21 Bizer C, Heath T, Berners-Lee T. Linked Data –The Story So Far. Int J Semant Web Inf Syst 2009; 5: 1-22.
  • 22 Pedrinaci C, Domingue J. Toward the Next Wave of Services: Linked Services for the Web of Data. J Univers Comput Sci 2010; 16 (13) 1694-1719.
  • 23 W3C.. RDF/XML Syntax Specification (Revised). 2004 [cited 2014 Mar 28]. Available from:
  • 24 W3C.. SPARQL 1.1 Overview. 2013 [cited 2014 Mar 28]. Available from:
  • 25 Integrating the Healthcare Enterprise.. IHE IT (ITI) Technical Framework. Volume 1 (ITI TF-1) Integration Profiles. 2013 [cited 2014 Mar 15]. Available from:
  • 26 Niazkhani Z, Pirnejad H, Berg M, Aarts J. The impact of computerized provider order entry systems on in-patient clinical workflow: a literature review. J Am Med Informatics Assoc 2009; 16 (Suppl. 04) 539-549.
  • 27 Veinot T, Zheng K, Lowery J. Using electronic health record systems in diabetes care: emerging practices. IHI ’10 Proceedings of the 1st ACM International Health Informatics Symposium 2010: 240-249.
  • 28 Lusignan S, Sismanidis C, Carey IM, DeWilde S, Richards N, Cook DG. Trends in the prevalence and management of diagnosed type 2 diabetes 1994–2001 in England and Wales. BMC Fam Pract 2005; 6 (Suppl. 01) 13.
  • 29 Ciemins EL, Coon PJ, Fowles JB, Min S. Beyond health information technology: critical factors necessary for effective diabetes disease management. J Diabetes Sci Technol 2009; 3 (Suppl. 03) 452-460.
  • 30 Browne ED, Schrefl M, Warren JR. Goal-focused Self-Modifying Workflow in the Healthcare Domain. Proceedings of the 37th Hawaii International Conference on System Sciences 2004: 1-10.
  • 31 Cleveringa FGW, Minkman MH, Gorter KJ, van den Donk M, Rutten GEHM. Diabetes Care Protocol: effects on patient-important outcomes. A cluster randomized, non-inferiority trial in primary care. Diabet Med 2010; 27 (Suppl. 04) 442-450.
  • 32 Grant RW, Wald JS, Poon EG, Schnipper JL, Gandhi TK, Volk LA. et al. Design and Implementation of a Web-Based Patient Portal Linked to an Ambulatory Care Electronic Health Record: Patient Gateway for Diabetes Collaorative Care. Diabetes Technol Ther 2006; 8 (Suppl. 05) 576-586.
  • 33 Costa BM, Fitzgerald KJ, Jones KM, Dunning Am T. Effectiveness of IT-based diabetes management interventions: a review of the literature. BMC Fam Pract 2009; 10: 72.
  • 34 O’Hagan C, De Vito G, Boreham CAG. Exercise prescription in the treatment of type 2 diabetes mellitus : current practices, existing guidelines and future directions. Sports Med 2013; 43 (Suppl. 01) 39-49.
  • 35 Friedman NM, Gleeson JM, Kent MJ, Foris M, Rodriguez DJ, Cypress M. Management of diabetes mellitus in the Lovelace Health Systems’ EPISODES OF CARE program. Am Coll Physicians–American Soc Intern Med 1998; 1 (Suppl. 01) 5-11.
  • 36 Grundel B, White GL, Eichold BH. Diabetes in the managed care setting: a prospective plan. South Med J 1999; 92 (Suppl. 05) 459-464.
  • 37 Holbrook A, Thabane L, Keshavjee K, Dolovich L, Bernstein B, Chan D. et al. Individualized electronic decision support and reminders to improve diabetes care in the community: COMPETE II randomized trial. Can Med Assoc J 2009; 181 1–2 37-44.
  • 38 Hetlevik I, Holmen J, Krüger O, Kristensen P, Iversen H, Furuseth K. Implementing clinical guidelines in the treatment of diabetes mellitus in general practice. Evaluation of effort, process, and patient outcome related to implementation of a computer-based decision support system. Int J Technol Assess Health Care 2000; 16 (Suppl. 01) 210-227.
  • 39 Kaufman DR, Pevzner J, Rodriguez M, Cimino JJ, Ebner S, Fields L. et al. Understanding workflow in tele-health video visits: observations from the IDEATel project. J Biomed Inform 2009; 42 (Suppl. 04) 581-592.
  • 40 Khan S, MacLean C, Littenberg B. The effect of the Vermont Diabetes Information System on inpatient and emergency department use: results from a randomized trial. Health Outcomes Res Med 2010; 1 (Suppl. 01) 1-7.
  • 41 Khattab MS, Swidan AM, Farghaly MN, Swidan HM, Ashtar MS, Darwish EA. et al. Quality improvement programme for diabetes care in family practice settings in Dubai. East Mediterr Heal J 2007; 13 (Suppl. 03) 492-503.
  • 42 MacLean CD, Littenberg B, Gagnon M, Reardon M, Turner PD, Jordan C. The Vermont Diabetes Information System (VDIS): study design and subject recruitment for a cluster randomized trial of a decision support system in a regional sample of primary care practices. Clin Trials 2004; 1 (Suppl. 06) 532-544.
  • 43 McCulloch DK, Price MJ, Hindmarsh M, Wagner EH. A population-based approach to diabetes management in a primary care setting: early results and lessons learned. Eff Clin Pract 1995; 1 (Suppl. 01) 12-22.
  • 44 Maclean CD, Gagnon M, Callas P, Littenberg B. The Vermont diabetes information system: a cluster randomized trial of a population based decision support system. J Gen Intern Med 2009; 24 (12) 1303-1310.
  • 45 Miller CD, Phillips LS, Tate MK, Porwoll JM, Rossman SD, Cronmiller N. et al. Meeting American Diabetes Association guidelines in endocrinologist practice. Diabetes Care 2000; 23 (Suppl. 04) 444-448.
  • 46 O’Connor P, Pronk N. Integrating population health concepts, clinical guidelines, and ambulatory medical systems to improve diabetes care. J Ambul Care Manage 1998; 21 (Suppl. 01) 67-73.
  • 47 O’Connor P, Sperl-Hillen JM, Rush WA.E, Johnson P, Amundson GH, Asche SE. et al. Impact of electronic health record clinical decision support on diabetes care: a randomized trial. Ann Fam Med 2011; 9 (Suppl. 01) 12-21.
  • 48 Ward MM, Yankey JW, Vaughn TE, BootsMiller BJ, Flach SD, Welke KF. et al. Physician process and patient outcome measures for diabetes care: relationships to organizational characteristics. Med Care 2004; 42 (Suppl. 09) 840-850.
  • 49 Rodbard HW, Schnell O, Unger J, Rees C, Amstutz L, Parkin CG. et al. Use of an automated decision support tool optimizes clinicians’ ability to interpret and appropriately respond to structured self-monitoring of blood glucose data. Diabetes Care 2012; 35 (Suppl. 04) 693-698.
  • 50 Roshanov PS, Misra S, Gerstein HC, Garg AX, Sebaldt RJ, Mackay Ja. et al. Computerized clinical decision support systems for chronic disease management: a decision-maker-researcher partnership systematic review. Implement Sci. BioMed Central Ltd 2011; 6 (Suppl. 01) 92.
  • 51 Thomas B. Improving blood pressure control among adults with CKD and diabetes: provider-focused quality improvement using electronic health records. Adv Chronic Kidney Dis 2011; 18 (Suppl. 06) 406-411.
  • 52 Dinneen SF, Bjornsen SS, Bryant SC, Zimmerman BR, Gorman CA, Knudsen JB. et al. Towards an optimal model for community-based diabetes care: design and baseline data from the Mayo Health System Diabetes Translation Project. J Eval Clin Pract 2000; 6 (Suppl. 04) 421-429.
  • 53 Sidorenkov G, Haaijer-Ruskamp FM, de Zeeuw D, Denig P. A longitudinal study examining adherence to guidelines in diabetes care according to different definitions of adequacy and timeliness. PLoS One 2011; 6 (Suppl. 09) e24278.
  • 54 Oh S-W, Lee HJ, Chin HJ, Hwang J-I. Adherence to clinical practice guidelines and outcomes in diabetic patients. Int J Qual Heal Care 2011; 23 (Suppl. 04) 413-419.
  • 55 Ko GT, So W-Y, Tong PC, Le Coguiec F, Kerr D, Lyubomirsky G. et al. From design to implementation--the Joint Asia Diabetes Evaluation (JADE) program: a descriptive report of an electronic web-based diabetes management program. BMC Med Inform Decis Mak 2010; 10: 26.
  • 56 Shea S, Starren J, Weinstock RS, Knudson PE, Teresi J, Holmes D. et al. Columbia University’s Informatics for Diabetes Education and Telemedicine (IDEATel) Project. J Am Med Informatics Assoc 2002; 9 (Suppl. 01) 49-63.
  • 57 Beliakov G, Warren J, Noone J. Mixed-initiative Decision Support for Care Planning Based on Clinical Practice Guidelines. J Decis Syst 2001; 10 3–4 429-448.
  • 58 Goldberg HI, Lessler DS, Mertens K, Eytan TA, Cheadle AD. Case Study in Brief Self-Management Support in a Web-Based Medical Record : A Pilot Randomized Controlled Trial. Jt Comm J Qual Saefty 2004; 30 (11) 629-635.
  • 59 Peleg M, Shachak A, Wang D, Karnieli E. Using multi-perspective methodologies to study users’ interactions with the prototype front end of a guideline-based decision support system for diabetic foot care. Int J Med Inform 2009; 78 (Suppl. 07) 482-493.
  • 60 Sequist T, Gandhi T, Karson A, Fiskio JM, Bugbee D, Sperling M. et al. A randomized trial of electronic clinical reminders to improve quality of care for diabetes and coronary artery disease. J Am Med Informatics Assoc 2005; 12 (Suppl. 04) 431-438.
  • 61 Russell K, Rosenzweig J. Improving outcomes for patients with diabetes using Joslin Diabetes Center’s Registry and Risk Stratification system. J Healthc Inf Manag 2007; 21 (Suppl. 02) 26-33.
  • 62 Eccles M, Hawthorne G, Whitty P, Steen N, Vanoli A, Grimshaw J. et al. A randomised controlled trial of a patient based Diabetes Recall and Management System: the DREAM trial: a study protocol [ISRCTN32042030]. BMC Health Serv Res 2002; 2 (Suppl. 01) 5.
  • 63 Maser RE, Lenhard MJ, Henderson BC, Cobb RS, Hands KE. Detection of subsequent episodes of gestational diabetes mellitus: a need for specific guidelines. J Diabetes Complications 2004; 18 (Suppl. 02) 86-90.
  • 64 Dorr D, Bonner L, Cohen A. Informatics systems to promote improved care for chronic illness: a literature review. J Am Med Informatics Assoc 2007; 14 (Suppl. 02) 156-163.
  • 65 Crosson JC, Obman-Strickland PA, Cohen DJ, Clark EC, Crabtree BF. Typical Electronic Health Record Use in Primary Care Practices and the Quality of Diabetes Care. Ann Fam Med 2012; 10 (Suppl. 03) 221-227.
  • 66 Hsieh F. Context-aware workflow driven resource allocation for e-healthcare. e-Health Networking, Application and Services, 2007 9th International Conference on 2007: 34-39.
  • 67 Brindisi M, Bui R, Mazo J, Marcus OZY, Vleet Van S, Bailey R. Redesigning clinic workflows for electronic medical record integration. Proceedings of the 2013 IEEE Systems and Information Engineering Design Symposium. USA2013 133-138
  • 68 O’Connor D. The apomediated world: regulating research when social media has changed research. J Law Med Ethics 2013; 41 (Suppl. 02) 470-483.