Appl Clin Inform 2014; 05(03): 621-629
DOI: 10.4338/ACI-2014-04-RA-0036
Research Article
Schattauer GmbH

JADE: A tool for medical researchers to explore adverse drug events using health claims data

D. Edlinger
1   Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Austria
,
S.K. Sauter
1   Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Austria
,
C. Rinner
1   Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Austria
,
L.M. Neuhofer
1   Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Austria
,
M. Wolzt
2   Department of Clinical Pharmacology, Medical University of Vienna, Austria
,
W. Grossmann
3   Research Group Scientific Computing, University of Vienna, Austria
,
G. Endel
4   Main Association of Austrian Social Security Organizations, Vienna, Austria
,
W. Gall
1   Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Austria
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received: 04. April 2014

accepted: 25. Mai 2014

Publikationsdatum:
19. Dezember 2017 (online)

Summary

Objective: The objective of our project was to create a tool for physicians to explore health claims data with regard to adverse drug reactions. The Java Adverse Drug Event (JADE) tool should enable the analysis of prescribed drugs in connection with diagnoses from hospital stays.

Methods: We calculated the number of days drugs were taken by using the defined daily doses and estimated possible interactions between dispensed drugs using the Austria Codex, a database including drug-drug interactions. The JADE tool was implemented using Java, R and a PostgreSQL database.

Results: Beside an overview of the study cohort which includes selection of gender and age groups, selected statistical methods like association rule learning, logistic regression model and the number needed to harm have been implemented.

Conclusion: The JADE tool can support physicians during their planning of clinical trials by showing the occurrences of adverse drug events with population based information.

Citation: Edlinger D, Sauter SK, Rinner C, Neuhofer LM, Wolzt M, Grossmann W, Endel G, Gall W. JADE: A tool for medical researchers to explore adverse drug events using health claims data. Appl Clin Inf 2014; 5: 621–629

http://dx.doi.org/10.4338/ACI-2014-04-RA-0036

 
  • References

  • 1 Kaufman D, Kelly J, Rosenberg L, Anderson T, Mitchell AA. Recent patterns of medication use in the ambulatory adult population of the united states: The slone survey. JAMA 2002; 287 (03) 337-344.
  • 2 Pirmohamed M, James S, Meakin S, Green C, Scott AK, Walley TJ. et al. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ 2004; 329 7456 15-19.
  • 3 van der Hooft CS, Sturkenboom MC, van Grootheest K, Kingma HJ, Stricker BHC. Adverse drug reaction-related hospitalisations. Drug Safety 2006; 29 (02) 161-168.
  • 4 Amann C, Hasford J, Stausberg J. Stationäre Aufnahmen wegen unerwünschter Arzneimittelereignisse (UAE): Analyse der DRG-Statistik 2006. Das Gesundheitswesen 2012; 74 (010) 639-644. German.
  • 5 Hazell L, Shakir SA. Under-reporting of adverse drug reactions. Drug Safety 2006; 29 (05) 385-396.
  • 6 AGES Medizinmarktaufsicht [Internet].. Erstmeldungen von Angehörigen der Gesundheitsberufe. Vienna (AT): Bundesamt für Sicherheit im Gesundheitswesen; [revised 2014 Jan 24; cited 2014 Jan 26]. Available from www.basg.gv.at/news%20-%20center/statistiken/arzneimittelsicherheit. German.
  • 7 Williams D, Feely J. Underreporting of adverse drug reactions: attitudes of Irish doctors. Irish Journal of Medical Science 1999; 168 (04) 257-261.
  • 8 Endel G [Internet].. Gesundheitssystemforschung in Österreich. Vienna (AT): Hauptverband der österreichischen Sozialversicherungsträger; 2011 Oct [cited 2014 Jan 21]. Available from http://www.hauptver//band.at/portal27/portal/hvbportal/channel_content/cmsWindow?action=2&p_menuid=71299&p_tabid=2&p_pubid=650904. German.
  • 9 Gall W, Dorda W, Durftschmid G, Endel G, Hronsky M, Neuhofer L. et al. Krankenhausaufenthalte infolge unerwünschter Arzneimittelereignisse. In: Ammenwerth E, Hörbst A, Hayn D, Schreier G. editors. Proceedings of eHealth2013; 2013 May 23–24, Vienna, Austria Vienna: OCG; 2013. p. 31-36. German.
  • 10 Stausberg J, Hasford J. Identification of adverse drug events: the use of ICD-10 coded diagnoses in routine hospital data. Deutsches Arzteblatt International 2010; 107 (03) 23-29.
  • 11 Österreichische Apotheker-Verlagsgesellschaft m.b. H [Internet].. Austria Codex 2006; 2006 [cited 2014 Jan 19]. Available from http://www3.apoverlag.at/dynasite.cfm?dsmid=106234. German.
  • 12 WHO Collaborating Center for Drug Statistics Methodology [Internet].. ATC/DDD Index 2014; [cited 2014 Jan 19]. Available from http://www.whocc.no/atc_ddd_index.
  • 13 Tricco AC, Pham B, Rawson NS. Manitoba and Saskatchewan administrative health care utilization databases are used differently to answer epidemiologic research questions. Journal of clinical epidemiology 2008; 61 (02) 192-197.
  • 14 Hoffmann F. Review on use of German health insurance medication claims data for epidemiological research. Pharmacoepidemiology and drug safety 2009; 18 (05) 349-356.
  • 15 Sansom L, Roughead E, Gilbert A, Primrose J. Coding drug-related admissions in medical records: is it adequate for monitoring the quality of medication use?. Australian Journal of Hospital Pharmacy 1998; 28 (01) 7-12.