Appl Clin Inform 2013; 04(02): 212-224
DOI: 10.4338/ACI-2012-12-RA-0053
Research Article
Schattauer GmbH

Diagnostic Performance of Electronic Syndromic Surveillance Systems in Acute Care

A Systematic Review
M. Kashiouris
1  Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
2  M.E.T.R.I.C., Mayo Clinic, Rochester, Minnesota, USA
,
J.C. O’Horo
1  Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
2  M.E.T.R.I.C., Mayo Clinic, Rochester, Minnesota, USA
,
B.W. Pickering
2  M.E.T.R.I.C., Mayo Clinic, Rochester, Minnesota, USA
3  Department of Anesthesiology, Division of Critical Care Medicine, Mayo Clinic, Rochester, Minnesota, USA
,
V. Herasevich
2  M.E.T.R.I.C., Mayo Clinic, Rochester, Minnesota, USA
3  Department of Anesthesiology, Division of Critical Care Medicine, Mayo Clinic, Rochester, Minnesota, USA
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received: 13. Dezember 2012

accepted: 29. April 2013

Publikationsdatum:
19. Dezember 2017 (online)

Summary

Context: Healthcare Electronic Syndromic Surveillance (ESS) is the systematic collection, analysis and interpretation of ongoing clinical data with subsequent dissemination of results, which aid clinical decision-making.

Objective: To evaluate, classify and analyze the diagnostic performance, strengths and limitations of existing acute care ESS systems.

Data Sources: All available to us studies in Ovid MEDLINE, Ovid EMBASE, CINAHL and Scopus databases, from as early as January 1972 through the first week of September 2012.

Study Selection: Prospective and retrospective trials, examining the diagnostic performance of inpatient ESS and providing objective diagnostic data including sensitivity, specificity, positive and negative predictive values.

Data Extraction: Two independent reviewers extracted diagnostic performance data on ESS systems, including clinical area, number of decision points, sensitivity and specificity. Positive and negative likelihood ratios were calculated for each healthcare ESS system. A likelihood matrix summarizing the various ESS systems performance was created.

Results: The described search strategy yielded 1639 articles. Of these, 1497 were excluded on abstract information. After full text review, abstraction and arbitration with a third reviewer, 33 studies met inclusion criteria, reporting 102,611 ESS decision points. The yielded I2 was high (98.8%), precluding meta-analysis. Performance was variable, with sensitivities ranging from 21% –100% and specificities ranging from 5%-100%.

Conclusions: There is significant heterogeneity in the diagnostic performance of the available ESS implements in acute care, stemming from the wide spectrum of different clinical entities and ESS systems. Based on the results, we introduce a conceptual framework using a likelihood ratio matrix for evaluation and meaningful application of future, frontline clinical decision support systems.

Citation: Kashiouris M, O’Horo JC, Pickering BW, Herasevich V. Diagnostic performance of electronic syndromic surveillance systems in acute care – a systematic review. Appl Clin Inf 2013; 4: 212–224

http://dx.doi.org/10.4338/ACI-2012-12-RA-0053