Abstract
The addition of various carboxylic acids to (trans -2-ethoxycyclopropyl)ethyne (1 ) by catalysis with [Ru(O2 CH)(CO)2 (PPh3 )]2 proceeds regioselectively in the Markovnikov sense with ring opening of the cyclopropyl
group to furnish allenylacetaldehyde acyl ethyl acetals 3 in high yields (44-96%, 11 examples). The allenylacetaldehyde derivatives undergo
palladium-catalyzed Heck-type cross coupling with iodobenzene and subsequent trapping
of the π-allylpalladium intermediate with primary and secondary amines to yield labile
[β-(1-aminomethyl)styryl]acetaldehyde acyl ethyl acetals 12 (24-83%, 4 examples). Anti-Markovnikov addition of carboxylic acids to the triple
bond in (trans -2-ethoxycyclopropyl)ethyne (1 ) without ring opening can be brought about under [Ru(CH2 CMeCH2 )2 (dppb)] catalysis to give 2-(trans -2-ethoxycyclopropyl)ethenyl esters 13 (69-92%, 3 examples). (1-Hydroxycyclopropyl)ethyne (14 ), under catalysis by [Ru(O2 CH)(CO)2 (PPh3 )]2 , reacts with carboxylic acids to yield 1-acetylcyclopropyl esters 15 (49-74%, 4 examples) by Markovnikov-sense addition and intramolecular transesterification.
Anti-Markovnikov- and Markovnikov-sense addition of carboxylic acids to unsubstituted
cyclopropylethyne can both be achieved regioselectively under catalysis with [Ru(CH2 CMeCH2 )2 (dppb)] and [Ru(O2 CH)(CO)2 (PPh3 )]2 to furnish 2-cyclopropylethenyl esters 23 (68-98%, 6 examples) and 1-cyclopropylethenyl esters 24 (66-97%, 5 examples), respectively.
Key words
acetylenes - cyclopropanes - allenes - ruthenium catalysis - palladium catalysis
References
<A NAME="RC04207SS-1X">1x </A>For AdM, this is to count as Part 145 in the series ‘Cyclopropyl Building Blocks
for Organic Synthesis’.
<A NAME="RC04207SS-1X">1x </A> For Part 144, see:
Nakamura I.
Nagata R.
Nemoto T.
Terada M.
Yamamoto Y.
Späth T.
de Meijere A.
Eur. J. Org. Chem.
2007,
4479
<A NAME="RC04207SS-1X">1x </A> For Part 143, see:
Yucel B.
Valentić N.
Noltemeyer M.
de Meijere A.
Eur. J. Org. Chem.
2007,
4081
<A NAME="RC04207SS-1">1 </A>
Acetylene Chemistry
Diederich F.
Stang PJ.
Tikwinski RR.
Wiley-VCH;
Weinheim:
2004.
<A NAME="RC04207SS-2A">2a </A>
Naota T.
Takaya H.
Murahashi SI.
Chem. Rev.
1998,
98:
2599
<A NAME="RC04207SS-2B">2b </A>
Ruthenium Catalysts and Fine Chemistry, In Topics in Organometallic Chemistry, Vol. 11
Bruneau C.
Dixneuf P. H.
Springer;
Heidelberg:
2004.
<A NAME="RC04207SS-3A">3a </A>
Bruneau C.
Dixneuf PH.
Acc. Chem. Res.
1999,
32:
311
<A NAME="RC04207SS-3B">3b </A>
Bruneau C.
Dixneuf PH.
Angew. Chem. Int. Ed.
2006,
45:
2176
<A NAME="RC04207SS-3C">3c </A>
Bruneau C.
Top. Organomet. Chem.
2004,
11:
125-153
<A NAME="RC04207SS-4A">4a </A>
Suzuki N.
Kondo T.
Mitsudo T.
Organometallics
1998,
17:
766
<A NAME="RC04207SS-4B">4b </A>
Morimoto T.
Chatani N.
Fukumoto Y.
Murai S.
J. Org. Chem.
1997,
62:
3762
<A NAME="RC04207SS-4C">4c </A>
Nishida M.
Adachi N.
Onozuka K.
Matsumura H.
Mori M.
J. Org. Chem.
1998,
63:
9158
<A NAME="RC04207SS-4D">4d </A>
Trost BM.
Toste FD.
J. Am. Chem. Soc.
1999,
121:
9728
<A NAME="RC04207SS-4E">4e </A>
Dérien S.
Dixneuf PH.
J. Organomet. Chem.
2004,
689:
1382
<A NAME="RC04207SS-5">5 </A>
Rotem M.
Shvo Y.
Organometallics
1983,
2:
1689
<A NAME="RC04207SS-6A">6a </A>
Mori M.
Sakakibara N.
Kinoshita A.
J. Org. Chem.
1998,
63:
6082
<A NAME="RC04207SS-6B">6b </A>
Zuercher WJ.
Scholl M.
Grubbs RH.
J. Org. Chem.
1998,
63:
4291
<A NAME="RC04207SS-6C">6c </A>
Picquet M.
Bruneau C.
Dixneuf PH.
Chem. Commun.
1998,
2249
<A NAME="RC04207SS-6D">6d </A>
Semeril D.
Bruneau C.
Dixneuf PH.
Adv. Synth. Catal.
2002,
344:
585
<A NAME="RC04207SS-7">7 </A>
Chatani N.
Morimoto T.
Muto T.
Murai S.
J. Am. Chem. Soc.
1994,
116:
6049
<A NAME="RC04207SS-8A">8a </A>
Liese T.
de Meijere A.
Angew. Chem., Int. Ed. Engl.
1982,
21:
65 ; Angew. Chem. 1982 , 94 , 65, Angew. Chem. Suppl. 1982 , 34
<A NAME="RC04207SS-8B">8b </A>
Liese T.
de Meijere A.
Chem. Ber.
1986,
119:
2995
<A NAME="RC04207SS-8C">8c </A>
Keyaniyan S.
Apel M.
Richmond JP.
de Meijere A.
Angew. Chem., Int. Ed. Engl.
1985,
24:
770 ; Angew. Chem . 1985 , 97 , 763
<A NAME="RC04207SS-8D">8d </A>
Bengtson G.
Keyaniyan S.
de Meijere A.
Chem. Ber.
1986,
119:
3607
<A NAME="RC04207SS-8E">8e </A>
de Meijere A.
Schulz T.-J.
Kostikov RR.
Graupner F.
Murr T.
Bielfeldt T.
Synthesis
1991,
547
<A NAME="RC04207SS-8F">8f </A>
Militzer HC.
Schömenauer S.
Otte C.
Puls C.
Hain J.
Bräse S.
de Meijere A.
Synthesis
1993,
998
<A NAME="RC04207SS-8G">8g </A>
Bräse S.
Schömenauer S.
McGaffin G.
Stolle A.
de Meijere A.
Chem. Eur. J.
1996,
2:
545
<A NAME="RC04207SS-8H">8h </A>
Flynn BL.
de Meijere A.
J. Org. Chem.
1999,
64:
400
<A NAME="RC04207SS-9">9 </A>
Salaün JRY.
Top. Curr. Chem.
1988,
144:
1-71
<A NAME="RC04207SS-10">10 </A>
Iwasawa N.
Narasaka K.
Top. Curr. Chem.
2000,
207:
69-88 ; and references cited therein
<A NAME="RC04207SS-11A">11a </A>
Bruneau C.
Neveux M.
Kabouche Z.
Dixneuf PH.
Synlett
1991,
755
<A NAME="RC04207SS-11B">11b </A>
Bruneau C.
Dixneuf PH.
Chem. Commun.
1997,
507
<A NAME="RC04207SS-11C">11c </A>
Doucet H.
Derrien N.
Kabouche Z.
Bruneau C.
Dixneuf PH.
J. Organomet. Chem.
1997,
551:
151
<A NAME="RC04207SS-11D">11d </A>
Neveux M.
Seiller B.
Hagedorn F.
Bruneau C.
Dixneuf PH.
J. Organomet. Chem.
1993,
451:
133
<A NAME="RC04207SS-11E">11e </A>
Seiller B.
Heins D.
Bruneau C.
Dixneuf PH.
Tetrahedron
1995,
51:
10901
<A NAME="RC04207SS-11F">11f </A>
Doucet H.
Höfer J.
Bruneau C.
Dixneuf PH.
J. Chem. Soc., Chem. Commun.
1993,
850
<A NAME="RC04207SS-11G">11g </A>
Doucet H.
Martin-Vaca B.
Bruneau C.
Dixneuf PH.
J. Org. Chem.
1995,
60:
7247
<A NAME="RC04207SS-11H">11h </A>
Doucet H.
Höfer J.
Derrien N.
Bruneau C.
Dixneuf PH.
Bull. Soc. Chim. Fr.
1996,
133:
939
<A NAME="RC04207SS-11I">11i </A>
Picquet M.
Bruneau C.
Dixneuf PH.
Chem. Commun.
1997,
1201
<A NAME="RC04207SS-11J">11j </A>
Le Paih J.
Dérien S.
Dixneuf PH.
Chem. Commun.
1999,
1437
<A NAME="RC04207SS-11K">11k </A>
Le Paih J.
Monnier F.
Dérien S.
Dixneuf PH.
Clot E.
Eisenstein O.
J. Am. Chem. Soc.
2003,
125:
11964
<A NAME="RC04207SS-12">12 </A>
The ring closure in this sequence9f is best performed with LiHMDS, not with LDA.9g Subsequent complete isomerization of the cis - to the trans -isomer in the initially obtained mixture is then achieved by treatment with LDA for
5 min.
<A NAME="RC04207SS-13">13 </A>
Emme I.
Bruneau C.
de Meijere A.
Dixneuf PH.
Synlett
2000,
1315
<A NAME="RC04207SS-14">14 </A> Possibly, the cyano group participates in the ruthenium-catalyzed reaction, see
ref. 3a and original publications cited therein
<A NAME="RC04207SS-15A">15a </A>
Dalla V.
Pale P.
Tetrahedron Lett.
1994,
35:
3525
<A NAME="RC04207SS-15B">15b </A>
Pale P.
Cuche J.
Tetrahedron Lett.
1987,
28:
6447
<A NAME="RC04207SS-15C">15c </A>
Jong TT.
Williard PG.
Porwell JP.
J. Org. Chem.
1984,
49:
735
<A NAME="RC04207SS-15D">15d </A>
Yamamoto M.
J. Chem. Soc., Perkin Trans. 1
1981,
582
<A NAME="RC04207SS-15E">15e </A>
Jellal A.
Grimaldi J.
Santelli M.
Tetrahedron Lett.
1984,
25:
3179
<A NAME="RC04207SS-15F">15f </A>
Yamamoto M.
J. Chem. Soc., Chem. Commun.
1978,
649
<A NAME="RC04207SS-15G">15g </A>
Kraft GA.
Katzenellenbogen JA.
J. Am. Chem. Soc.
1981,
103:
5459
<A NAME="RC04207SS-15H">15h </A>
Spencer RW.
Tam TF.
Thomas E.
Robinson VJ.
Krantz A.
J. Am. Chem. Soc.
1986,
108:
5589
<A NAME="RC04207SS-15I">15i </A>
Castner J.
Pascual J.
J. Chem. Soc.
1958,
3962
<A NAME="RC04207SS-15J">15j </A>
Pale P.
Chuche J.
Tetrahedron Lett.
1987,
28:
6447
<A NAME="RC04207SS-16A">16a </A>
Zimmer R.
Dinesh CU.
Nandanan E.
Khan FA.
Chem. Rev.
2000,
100:
3067
<A NAME="RC04207SS-16B">16b </A>
Smadja W.
Chem. Rev.
1983,
83:
263
<A NAME="RC04207SS-16C">16c </A>
Alkynes, Di- and Polyynes, Allenes, Cumulenes, In Houben-Weyl
4th ed., Vol. 5/2a:
Müller E.
Thieme;
Stuttgart:
1977.
<A NAME="RC04207SS-17A">17a </A>
Shimizu I.
Tsuji J.
Chem. Lett.
1984,
233
<A NAME="RC04207SS-17B">17b </A>
Grigg R.
Brown S.
Sridharan V.
Uttley MD.
Tetrahedron Lett.
1998,
39:
3247
<A NAME="RC04207SS-17C">17c </A>
Bando T.
Harayama H.
Fukazawa Y.
Shiro M.
Fugami K.
Tanaka S.
Tamura Y.
J. Org. Chem.
1994,
59:
1465
<A NAME="RC04207SS-17D">17d </A>
Ma S.
Negishi E.-I.
J. Am. Chem. Soc.
1995,
117:
6345
<A NAME="RC04207SS-17E">17e </A>
Ahmar M.
Cazes B.
Gore J.
Tetrahedron Lett.
1984,
25:
4505
<A NAME="RC04207SS-17F">17f </A>
Grigg R.
Sridharan V.
Terrier C.
Tetrahedron Lett.
1996,
37:
4221
<A NAME="RC04207SS-17G">17g </A>
Grigg R.
Savic V.
Tetrahedron Lett.
1996,
37:
6565
<A NAME="RC04207SS-17H">17h </A>
Larock RC.
Zenner JM.
J. Org. Chem.
1995,
60:
482
<A NAME="RC04207SS-17I">17i </A>
Besson L.
Bazin J.
Gore J.
Cazes B.
Tetrahedron Lett.
1994,
35:
2881
<A NAME="RC04207SS-17J">17j </A>
Cazes B.
Pure Appl. Chem.
1990,
62:
1867
<A NAME="RC04207SS-17K">17k </A>
Larock RC.
Berrios-Pena NG.
Fried CA.
J. Am. Chem. Soc.
1991,
56:
2615
<A NAME="RC04207SS-18A">18a </A>
Doucet H.
Bruneau C.
Dixneuf PH.
Synlett
1997,
7:
807
<A NAME="RC04207SS-18B">18b </A>
Syper L.
Tetrahedron
1987,
43:
2853
<A NAME="RC04207SS-19">19 </A>
Salaün J.
Marguerite J.
Org. Synth. Coll. Vol. VII
John Wiley & Sons;
London:
1990.
p.131
<A NAME="RC04207SS-20">20 </A>
Militzer H.-C.
Dissertation
Universität Hamburg;
Germany:
1990.
<A NAME="RC04207SS-21">21 </A>
Bruneau C.
Kabouche Z.
Neveux M.
Seiller B.
Dixneuf PH.
Inorg. Chim. Acta
1994,
222:
155
<A NAME="RC04207SS-22">22 </A>
Lechevallier A.
Huet F.
Conia JC.
Tetrahedron
1983,
39:
3329
<A NAME="RC04207SS-23A">23a </A>
Salaün J.
Almirantis Y.
Tetrahedron
1983,
39:
2441
<A NAME="RC04207SS-23B">23b </A>
Barnier J.-P.
Karkour B.
Salaün J.
J. Chem. Soc., Chem. Commun.
1985,
1270
Cyclopropylethyne is commercially available and can easily be prepared in two to three
steps:
<A NAME="RC04207SS-24A">24a </A>
Corley EG.
Thomson AS.
Huntington M.
Org. Synth. Coll. Vol. X
John Wiley & Sons;
London:
2004.
p.456
<A NAME="RC04207SS-24B">24b </A>
See ref. 9f.
<A NAME="RC04207SS-25">25 </A>
It is noteworthy that the amount of catalyst is critical in this reaction. When less
than 1 mol% of C was used, an increasing amount of the 1-substituted vinyl ester was observed. The
prolonged reaction time allowed the catalyst to alter (be oxidized?) and obviously
the altered species still catalyzes the addition but with diminished selectivity.
<A NAME="RC04207SS-26">26 </A>
Ruppin C.
Dixneuf PH.
Tetrahedron Lett.
1986,
27:
6323
<A NAME="RC04207SS-27">27 </A> 1-Ethynylcyclopropanol (14 ) had previously been prepared from cyclopropanone ethyl hemiacetal, yet only in 21%
yield; see:
Wasserman HH.
Cochoy RE.
Baird MS.
J. Am. Chem. Soc.
1969,
91:
2375
<A NAME="RC04207SS-28A">28a </A>
Salaün J.
J. Org. Chem.
1976,
41:
1237
<A NAME="RC04207SS-28B">28b </A>
Salaün J.
Bennani F.
Compain JC.
Fadel A.
J. Org. Chem.
1980,
45:
4129