References and Notes
<A NAME="RG05207ST-1A">1a</A> For a recent monograph, see: Multicomponent Reactions
Zhu J.
Bienaymé H.
Wiley-VCH;
Weinheim:
2005.
For some recent reviews on MCRs, see:
<A NAME="RG05207ST-1B">1b</A>
Dömling A.
Chem. Rev.
2006,
106:
17 ; and references cited therein
<A NAME="RG05207ST-1C">1c</A>
Bienaymé H.
Hulme C.
Oddon G.
Schmitt P.
Chem. Eur. J.
2000,
6:
3321
<A NAME="RG05207ST-1D">1d</A>
Dömling A.
Ugi I.
Angew. Chem. Int. Ed.
2000,
39:
3168
<A NAME="RG05207ST-1E">1e</A>
Zhu J.
Eur. J. Org. Chem.
2003,
1133
<A NAME="RG05207ST-1F">1f</A>
Orru RV.
de Greef M.
Synthesis
2003,
1471
<A NAME="RG05207ST-1G">1g</A>
Ramon DJ.
Yus M.
Angew. Chem. Int. Ed.
2005,
44:
1602
For representative reviews, see:
<A NAME="RG05207ST-1H">1h</A>
Tietze LF.
Chem. Rev.
1996,
96:
115
<A NAME="RG05207ST-1I">1i</A>
Tietze LF.
Lieb ME.
Curr. Opin. Chem. Biol.
1998,
2:
363
<A NAME="RG05207ST-1J">1j</A>
Rodriguez J.
Synlett
1999,
505
<A NAME="RG05207ST-1K">1k</A>
Tietze LF.
Brasche G.
Gericke K.
Domino Reactions in Organic Synthesis
Wiley-VCH;
Weinheim:
2006.
<A NAME="RG05207ST-2">2</A>
Weber L.
Illgen M.
Almstetter M.
Synlett
1999,
366
<A NAME="RG05207ST-3">3</A>
Schreiber SL.
Science
2000,
287:
1964
<A NAME="RG05207ST-4A">4a</A>
Trost BM.
Science
1991,
254:
1471
<A NAME="RG05207ST-4B">4b</A>
Trost BM.
Angew. Chem. Int. Ed.
1995,
34:
258
<A NAME="RG05207ST-4C">4c</A>
Trost BM.
Acc. Chem. Res.
2002,
35:
695
<A NAME="RG05207ST-5A">5a</A>
Wender PA.
Bi FC.
Gamber GG.
Gosselin F.
Hubbard RD.
Scanio MJC.
Sun R.
Williams TJ.
Zhang L.
Pure Appl. Chem.
2002,
74:
25
<A NAME="RG05207ST-5B">5b</A>
Wender PA.
Baryza JL.
Brenner SE.
Clarke MO.
Gamber GG.
Horan JC.
Jessop TC.
Kan C.
Pattabiraman K.
Williams TJ.
Pure Appl. Chem.
2003,
75:
143
<A NAME="RG05207ST-5C">5c</A>
Wender PA.
Baryza JL.
Brenner SE.
Clarke MO.
Craske ML.
Horan JC.
Meyer T.
Curr. Drug Discov. Technol.
2004,
1:
1
<A NAME="RG05207ST-5D">5d</A>
Wender PA.
Gamber GG.
Hubbard RD.
Pham SM.
Zhang L.
J. Am. Chem. Soc.
2005,
127:
2836
<A NAME="RG05207ST-6">6</A> For a special issue in environmental chemistry, see:
Grissom CB.
Chem. Rev.
1995,
95:
3
<A NAME="RG05207ST-7">7</A>
Wender PA.
Handy ST.
Wright DL.
Chem. Ind. (London)
1997,
765
<A NAME="RG05207ST-8A">8a</A>
See refs 1a and 1b.
<A NAME="RG05207ST-8B">8b</A>
Gracias V.
Gasiecki AF.
Djuric SW.
Org. Lett.
2005,
7:
3183
For recent reviews, see:
<A NAME="RG05207ST-9A">9a</A> Simon C., Constantieux T., Rodriguez J.; Eur. J. Org. Chem.; 2004, 4957
<A NAME="RG05207ST-9B">9b</A>
Constantieux T.
Rodriguez J. In Targets in Heterocyclic Systems
Vol 9:
Attanasi OA.
Spinelli D.
Società Chimica Italiana;
Rome:
2005.
<A NAME="RG05207ST-9C">9c</A>
Liéby-Muller F.
Simon C.
Constantieux T.
Rodriguez J.
QSAR Comb. Sci.
2006,
25:
432
<A NAME="RG05207ST-10A">10a</A>
Liéby-Muller F.
Simon C.
Imhof K.
Constantieux T.
Rodriguez J.
Synlett
2006,
1671
<A NAME="RG05207ST-10B">10b</A>
Liéby-Muller F.
Constantieux T.
Rodriguez J.
J. Am. Chem. Soc.
2005,
127:
17176
<A NAME="RG05207ST-10C">10c</A>
Habib-Zahmani H.
Hacini S.
Charonnet E.
Rodriguez J.
Synlett
2002,
1827
<A NAME="RG05207ST-11A">11a</A>
Sannigrahi M.
Tetrahedron
1999,
55:
9007
<A NAME="RG05207ST-11B">11b</A>
Martin JD. In Studies in Natural Products Chemistry
Vol. 6:
.
Elsevier;
Amsterdam:
1990.
p.59
<A NAME="RG05207ST-11C">11c</A>
El Bialy SAA.
Braun H.
Tietze LF.
Synthesis
2004,
2249
<A NAME="RG05207ST-12">12</A>
Takada N.
Umemura N.
Suenaga K.
Chou T.
Nagatsu A.
Haino T.
Yamada K.
Uemura D.
Tetrahedron Lett.
2001,
42:
3491
<A NAME="RG05207ST-13">13</A>
Takada N.
Umemura N.
Suenaga K.
Uemura D.
Tetrahedron Lett.
2001,
42:
3495
<A NAME="RG05207ST-14A">14a</A>
See ref. 10b.
<A NAME="RG05207ST-14B">14b</A>
Charonnet E.
Filippini MH.
Rodriguez J.
Synthesis
2001,
788
<A NAME="RG05207ST-15">15</A>
General Procedure for MCRs: To a solution of ketoester or ketoamide 1 (1 mmol) and DBU (3 mmol) in appropriate solvent (4 mL, Table 1) was added the corresponding
aldehyde 2 (1.1 mmol) and halide 3 (2 mmol). The resulting solution was stirred for the indicated time and at the indicated
temperature (Table 1). After completion of the reaction and evaporation of most of
the solvent under reduced pressure, 1 N solution of HCl (30 mL) was added to the oily
residue. Extraction with Et2O (3 × 40 mL) followed by successive washing with distilled H2O (2 × 20 mL) and brine (20 mL) gave, after drying (MgSO4) and evaporation of the solvent, the crude compounds which were purified by flash
chromatography on silica gel.
Physical Data for Compound 4b: yellow oil; R
f
[Et2O-PE (50:50)] 0.79. IR (liquid film): 2942, 1740, 1678, 1588, 1472, 1208, 1133, 927
cm-1. MS: m/z (%) = 305 (100) [M + H+], 264 (13), 247 (36), 219 (12), 206 (8). 1H NMR (300.13 MHz, CDCl3): δ = 7.50 (d, J = 1.5 Hz, 1 H), 7.35 (s, 1 H), 6.72 (d, J = 3.5 Hz, 1 H), 6.53 (dd, J = 1.5, 3.5 Hz, 1 H), 5.65-5.92 (m, 2 H), 5.13-5.32 (m, 4 H), 4.63 (dd, J = 1.0, 5.6 Hz, 2 H), 3.71 (d, J = 11.2 Hz, 1 H), 3.15 (d, J = 11.2 Hz, 1 H), 2.84 (dd, J = 7.1, 13.8 Hz, 1 H), 2.58 (dd, J = 7.6, 13.8 Hz, 1 H). 13C NMR (75.47 MHz, CDCl3): δ = 197.3, 168.9, 151.6, 144.7, 131.3, 132.0, 128.2, 118.8, 115.9, 120.1, 112.9,
115.5, 66.6, 60.4, 38.6, 32.7.
<A NAME="RG05207ST-16A">16a</A>
Fürstner A.
Langemann K.
J. Am. Chem. Soc.
1997,
119:
9130
<A NAME="RG05207ST-16B">16b</A>
Cossy J.
Bauer D.
Bellosta V.
Tetrahedron Lett.
1999,
40:
4187
<A NAME="RG05207ST-16C">16c</A>
Ghosh AK.
Cappiello J.
Shin D.
Tetrahedron Lett.
1998,
39:
4651
<A NAME="RG05207ST-16D">16d</A>
Fürstner A.
Langemann K.
J. Am. Chem. Soc.
1997,
119:
9130
<A NAME="RG05207ST-17">17</A>
General Procedure for RCMs: To a 6 × 10-3 M solution of spiroheterocyclic precursors 4a-e in anhyd CH2Cl2, under an atmosphere of argon, Grubbs’ catalyst 5b was introduced in several portions of 2% every 2 h. The mixture was stirred at reflux
and completion of reaction was checked by TLC. The mixture was filtered through a
pad of silica gel and celite and the crude material was purified by flash chromatography
on silica gel.
Physical Data for Compound 6c: yellow solid; mp 104-106 °C. IR (liquid film): 2960, 1708, 1620, 1460, 1201, 1030
cm-1. MS: m/z (%) = 290 (100) [M + H+], 233 (17), 190 (5). 1H NMR (300.13 MHz, CDCl3): δ = 7.53 (d, J = 1.7 Hz, 1 H), 7.32 (s, 1 H), 6.67 (d, J = 3.3 Hz, 1 H), 6.49 (dd, J = 1.7, 3.3 Hz, 1 H), 5.75-5.85 (m, 2 H), 3.90-4.18 (m, 2 H), 3.81 (d, J = 11.7 Hz, 1 H), 3.03 (s, 3 H), 3.00 (d, J = 11.7 Hz, 1 H), 2.89-2.98 (m, 1 H), 2.26-2.35 (m, 1 H). 13C NMR (75.47 MHz, CDCl3): δ = 198.6, 170.2, 151.8, 144.4, 127.7, 125.8, 128.4, 112.8, 115.5, 115.0, 60.4,
49.8, 38.9, 35.1, 31.9.
<A NAME="RG05207ST-18">18</A>
Heck RF.
Vinyl Substitution with Organopalladium Intermediates, In Comprehensive Organic Synthesis
Vol. 4:
Pergamon;
Oxford:
1991.
<A NAME="RG05207ST-19A">19a</A>
Wolfe JP.
Wagaw S.
Buchwald SL.
J. Am. Chem. Soc.
1996,
118:
7215
<A NAME="RG05207ST-19B">19b</A>
Yang BH.
Buchwald SL.
Org. Lett.
1999,
1:
35
<A NAME="RG05207ST-20">20</A>
General Procedure for Heck Reaction: To a 4 × 10-2 M solution of spiroheterocyclic precursors 4f and 4g in anhyd MeCN, under an atmosphere of argon, palladium acetate (4 equiv) and PPh3 (8 equiv) were added, followed by Et3N (1.2 equiv). The mixture was stirred at reflux and the completion of reaction was
checked by TLC. The mixture was filtered through a pad of celite and the crude material
was purified by flash chromatography on silica gel.
Physical Data for Compound 7b: yellow powder; mp 169-171 °C. IR (liquid film): 2926, 1719, 1626, 1444, 1337, 1256,
940 cm-1. MS: m/z (%) = 326 (100) [M + H+], 295 (3), 255 (3), 201 (3), 164 (16). 1H NMR (300.13 MHz, CDCl3): δ = 7.34-7.64 (m, 6 H), 5.41 (d, J = 0.9, 16.6 Hz, 2 H), 5.02 (d, J = 9.3 Hz, 1 H), 4.72 (dd, J = 1.1, 15.1 Hz, 2 H), 4.04 (dd, J = 0.9, 11.3 Hz, 1 H), 3.57 (d, J = 15.3 Hz, 1 H), 3.07 (d, J = 11.2 Hz, 1 H), 3.03 (s, 3 H), 2.98 (d, J = 14.4 Hz, 1 H), 2.56 (d, J = 14.4 Hz, 1 H). 13C NMR (75.47 MHz, CDCl3): δ = 200.9, 169.0, 143.5, 141.8, 135.0, 130.5, 129.6, 129.5, 129.2, 128.8, 115.3,
112.8, 61.4, 54.2, 39.4, 37.1, 31.1.