Abstract
Cyclic β-ketoesters and β-ketoamides undergo, in a one-pot process, an unprecedented
DBU-MeOH-promoted regio- and stereoselective γ-functionalization with aldehydes, by
a directed γ-aldol reaction and dehydration sequence, to afford synthetically valuable
alkylidene (or arylidene) cycloalkanones in good yields. While β-ketoesters give good
results only with aromatic aldehydes, β-ketoamides react smoothly either with aromatic,
aliphatic, or α,β-unsaturated aldehydes following a totally regioselective 1,2-addition.
The overall sequence, probably initiated by a reversible α-aldol reaction, allows
the formation of hitherto unknown and stereodefined γ-functionalized cycloalkanones
having three reactive centers, such as two electrophilic and one nucleophilic site.
Key words
β-ketoesters - β-ketoamides - γ-functionalization - aldol reaction - alkylidene (or
arylidene) cycloalkanones
References
<A NAME="RM03700SS-1A">1a </A>
Hauser CR.
Hudson BE. Jr.
Org. React.
1942,
1:
266
<A NAME="RM03700SS-1B">1b </A>
Hauser CR.
Harris TM.
J. Am. Chem. Soc.
1958,
80:
6360
<A NAME="RM03700SS-2A">2a </A>
Thompson CM.
Green DLC.
Tetrahedron
1991,
47:
4223
<A NAME="RM03700SS-2B">2b </A>
Thompson CM.
Dianion Chemistry in Organic Synthesis
CRC Press Inc.;
Boca Raton:
1994.
<A NAME="RM03700SS-2C">2c </A>
Moreno-Mañas M.
Marquet J.
Vallribera A.
Tetrahedron
1996,
52:
3377
<A NAME="RM03700SS-3">3 </A> For a recent review on the chemistry of β-ketoesters, see:
Benetti S.
Romagnoli R.
DeRisi C.
Spalluto G.
Zanirato V.
Chem. Rev.
1995,
95:
1065
<A NAME="RM03700SS-4A">4a </A>
Filippini M.-H.
Faure R.
Rodriguez J.
J. Org. Chem.
1995,
60:
6872
<A NAME="RM03700SS-4B">4b </A>
Filippini M.-H.
Rodriguez J.
J. Org. Chem.
1997,
62:
3034
<A NAME="RM03700SS-4C">4c </A> For a recent account, see:
Rodriguez J.
Synlett
1999,
505
For recent α,γ-difunctionalizations of 1,3-dicarbonyl derivatives leading to cyclic
compounds, see:
<A NAME="RM03700SS-5A">5a </A>
Edafiogho IO.
Hinko CN.
Chang H.
Moore JA.
Mulzac D.
Nicholson JM.
Scott KR.
J. Med. Chem.
1992,
35:
2798
<A NAME="RM03700SS-5B">5b </A>
Chong B.-D.
Ji Y.-I.
Oh S.-S.
Yang J.-D.
Baik W.
Koo S.
J. Org. Chem.
1997,
62:
9323
<A NAME="RM03700SS-5C">5c </A>
Yang J.-D.
Kim M.-S.
Baik W.
Koo S.
Synthesis
2000,
801
<A NAME="RM03700SS-5D">5d </A>
Dyker G.
Thöne A.
Tetrahedron
2000,
56:
8669
For γ-alkylation of β-ketoesters via their enamine derivatives, see:
<A NAME="RM03700SS-6A">6a </A>
Gravel D.
Labelle M.
Can. J. Chem.
1985,
63:
1874
<A NAME="RM03700SS-6B">6b </A> For γ-acylation of 1,3-diacarbonyls via their bis(trimethylsiloxy)-1,3-diene
derivatives, see:
Langer P.
Schneider T.
Synlett
2000,
497
<A NAME="RM03700SS-7A">7a </A>
Harris TM.
Harris CM.
Org. React.
1969,
17:
155
<A NAME="RM03700SS-7B">7b </A>
Kaiser EM.
Petty JD.
Knutson PLA.
Synthesis
1977,
509
<A NAME="RM03700SS-7C">7c </A>
Thompson CM.
Green DLC.
Tetrahedron
1991,
47:
4223
<A NAME="RM03700SS-7D">7d </A>
Thompson CM.
Dianion Chemistry in Organic Synthesis
CRC Press Inc.;
Boca Raton:
1994.
<A NAME="RM03700SS-7E">7e </A> For recent synthetic application of the selective γ-alkylation, see:
Lygo B.
Synlett
1993,
764
<A NAME="RM03700SS-7F">7f </A>
Nakada M.
Iwata Y.
Takano M.
Tetrahedron Lett.
1999,
40:
9077
<A NAME="RM03700SS-7G">7g </A>
Langer P.
Freifeld I.
Holtz E.
Synlett
2000,
501
<A NAME="RM03700SS-7H">7h </A>
Langer P.
Karimé I.
Synlett
2000,
743
<A NAME="RM03700SS-8A">8a </A>
Huckin SN.
Weiler L.
J. Am. Chem. Soc.
1974,
96:
1082
<A NAME="RM03700SS-8B">8b </A>
Caine D.
Comprehensive Organic Synthesis
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
Vol. 3:
Chap. 1.1.
Computer-assisted structural search on REACS or Beilstein databases gave no answer.
See also:
<A NAME="RM03700SS-9A">9a </A>
Trost BM.
Comprehensive Organic Synthesis
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
Vol. 3:
Chap 1.1.
<A NAME="RM03700SS-9B">9b </A>
Trost BM.
Comprehensive Organic Synthesis
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
Vol. 3:
Chap. 1.6 and 3.6.
For a comprehensive review on the directed aldol reaction, see:
<A NAME="RM03700SS-10A">10a </A>
Mukaiyama T.
Org. React.
1982,
28:
203
<A NAME="RM03700SS-10B">10b </A> For general references on the Knoevenagel reaction, which can be regarded as
an α-aldol-dehydration sequence, see:
Jones G.
Org. React.
1967,
15:
204
<A NAME="RM03700SS-10C">10c </A>
Tietze LF.
Beifuss U. In Comprehensive Organic Synthesis
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
341.
<A NAME="RM03700SS-10D">10d </A> See also:
Sqbal J.
Srivastava RR.
Tetrahedron Lett.
1991,
32:
1663
<A NAME="RM03700SS-11A">11a </A>
Bonini C.
Racioppi R.
Righi G.
Viggiani L.
J. Org. Chem.
1993,
58:
802
<A NAME="RM03700SS-11B">11b </A> For a recent synthetic application of a similar γ-aldolization/dehydration sequence,
using acetyl acetone, see:
Haddad N.
Rukhman I.
Abramovich Z.
J. Org. Chem.
1997,
62:
7629
<A NAME="RM03700SS-12A">12a </A>
Huckin SN.
Weiler L.
Can. J. Chem.
1974,
52:
2157
<A NAME="RM03700SS-12B">12b </A>
Spino C.
Tu N.
Tetrahedron Lett.
1994,
35:
3683
<A NAME="RM03700SS-13">13 </A>
Trost BM.
Kunz RA.
J. Org. Chem.
1974,
39:
2648
<A NAME="RM03700SS-14A">14a </A>
Bodalski R.
Pietrusiewicz KM.
Monkiewicz J.
Koszuk J.
Tetrahedron Lett.
1980,
21:
2287
<A NAME="RM03700SS-14B">14b </A>
van der Goorbergh JAM.
van der Gen A.
Tetrahedron Lett.
1980,
21:
3621
<A NAME="RM03700SS-14C">14c </A>
Ley SV.
Woodward PR.
Tetrahedron Lett.
1987,
28:
345
<A NAME="RM03700SS-15A">15a </A>
Zibuck R. In Encyclopedia of Reagents for Organic Synthesis
Paquette LA.
John Wiley;
New York:
1995.
3558.
<A NAME="RM03700SS-15B">15b </A> For some selected synthetic transformations, see:
Cooke MP. Jr.
Jaw J.-Y.
Synth. Commun.
1992,
22:
2213
<A NAME="RM03700SS-15C">15c </A>
Dodd DS.
Oehlschlager AC.
Georgopapadakou NH.
Polak A.-M.
Hartman PG.
J. Org. Chem.
1992,
57:
7226
<A NAME="RM03700SS-15D">15d </A>
Banwell MG.
Cameron JM.
Tetrahedron Lett.
1996,
37:
525
<A NAME="RM03700SS-16">16 </A>
Moorhoff CM.
Schneider DF.
Tetrahedron Lett.
1987,
28:
559
<A NAME="RLIT-17A">17a </A> For preliminary results with cyclic β-ketoesters, see:
Filippini MH.
Rodriguez J.
Chem. Commun.
1995,
33
<A NAME="RM03700SS-17B">17b </A> It has been shown that formaldehyde and other substituted aldehydes reacted selectively
at the α-position of cyclic and acyclic 1,3-dicarbonyls to give, after a deacylative
condensation, α,β-unsaturated compounds:
Ksander GM.
McMurry JE.
Johnson M.
J. Org. Chem.
1977,
42:
1180
<A NAME="RM03700SS-17C">17c </A>
Tsuboi S.
Uno T.
Takeda A.
Chem. Lett.
1978,
1325
<A NAME="RM03700SS-17D">17d </A>
Ueno Y.
Setoi H.
Okawara M.
Tetrahedron Lett.
1978,
3753
<A NAME="RM03700SS-17E">17e </A>
Queignec R.
Kirschleger B.
Lambert F.
Aboutaj M.
Synth. Commun.
1988,
18:
1213
<A NAME="RM03700SS-17F">17f </A>
Ben Ayed T.
Amri H.
Synth. Commun.
1995,
25:
3813
For selected references, see:
<A NAME="RM03700SS-18A">18a </A>
Abdulla RF.
Fuhr KF.
J. Org. Chem.
1978,
43:
4248
<A NAME="RM03700SS-18B">18b </A>
Corey EJ.
Mehrotra MM.
J. Am. Chem. Soc.
1984,
106:
3384
<A NAME="RM03700SS-18C">18c </A>
Sasai H.
Shibasaki M.
Tetrahedron Lett.
1987,
28:
333
<A NAME="RM03700SS-18D">18d </A>
Jung ME.
Pan YC.
Hart MW.
Nat. Prod. Rep.
1988,
1
<A NAME="RM03700SS-18E">18e </A>
Iwasaki G.
Sano M.
Sodeoka M.
Yoshida K.
Shibasaki M.
J. Org. Chem.
1988,
53:
4864
<A NAME="RM03700SS-19">19 </A>
Deli J.
Lorand T.
Szabo D.
Földesi A.
Pharmazie
1984,
39:
539
<A NAME="RM03700SS-20A">20a </A>
Tyndall DV.
Al Nakib T.
Meegan MJ.
Tetrahedron Lett.
1988,
29:
2703
<A NAME="RM03700SS-20B">20b </A>
Huang C.-Y.
Cabell LA.
Anslyn EV.
J. Am. Chem. Soc.
1994,
116:
2778
<A NAME="RM03700SS-21">21 </A>
Sayed HH.
Indian J. Chem., Sect. B
1998,
37:
1054
<A NAME="RM03700SS-22">22 </A>
Popkov SV.
Kovalenko LV.
Tashchi VP.
Bogel’fer LY.
Russ. Chem. Bull.
1994,
43:
1363
<A NAME="RM03700SS-23">23 </A>
Koch K.
Smitrovich JH.
Tetrahedron Lett.
1994,
35:
1137
<A NAME="RM03700SS-24">24 </A>
Varma RS.
Kumar D.
Synthesis
1999,
1288
<A NAME="RM03700SS-25A">25a </A>
Pearson RG.
Dillon RL.
J. Am. Chem. Soc.
1953,
75:
2439
<A NAME="RM03700SS-25B">25b </A>
See also ref. 27a and 32b for discussions on pKa .
<A NAME="RM03700SS-26">26 </A>
Moya P.
Cantin A.
Castillo MA.
Primo J.
Miranda MA.
Primo-Yufera E.
J. Org. Chem.
1998,
63:
8530
<A NAME="RM03700SS-27A">27a </A>
Hoffman RV.
Huizenga DJ.
J. Org. Chem.
1991,
56:
6435
<A NAME="RM03700SS-27B">27b </A>
Schultz AG.
Holoboski MA.
Tetrahedron Lett.
1993,
34:
5885
<A NAME="RM03700SS-27C">27c </A>
Nair V.
Sheeba V.
J. Org. Chem.
1999,
64:
6898
<A NAME="RM03700SS-28A">28a </A>
DeShong P.
Lowmaster NE.
Baralt O.
J. Org. Chem.
1983,
48:
1149
<A NAME="RM03700SS-28B">28b </A>
Schlessinger RH.
Bebernitz GR.
Lin P.
Poss AJ.
J. Am. Chem. Soc.
1985,
107:
1777
<A NAME="RM03700SS-29A">29a </A>
Cossy J.
Leblanc C.
Tetrahedron Lett.
1989,
31:
4531
<A NAME="RM03700SS-29B">29b </A>
Cossy J.
Thellend A.
Tetrahedron Lett.
1990,
31:
1427
<A NAME="RM03700SS-29C">29c </A>
Meyer C.
Piva O.
Pete J.-P.
Tetrahedron Lett.
1996,
37:
5885
<A NAME="RM03700SS-29D">29d </A>
Cossy J.
Bouzide A.
Tetrahedron
1997,
53:
5775
<A NAME="RM03700SS-30">30 </A>
Snider BB.
Zhang Q.
Tetrahedron Lett.
1992,
33:
5921
<A NAME="RM03700SS-31">31 </A>
Babudri F.
Ciminale F.
DiNunno L.
Florio S.
Tetrahedron
1982,
38:
557
For our preliminary results with cyclic β-ketoamides, see:
<A NAME="RM03700SS-32A">32a </A>
Charonnet E.
Filippini M.-H.
Rodriguez J.
Synlett
1999,
1951
<A NAME="RM03700SS-32B">32b </A> For related γ-functionalization of chiral β-ketoimides and their important synthetic
applications, see:
Evans DA.
Ennis MD.
Le T.
J. Am. Chem. Soc.
1984,
106:
1154
<A NAME="RM03700SS-32C">32c </A>
Evans DA.
DiMare M.
J. Am. Chem. Soc.
1986,
108:
2476
<A NAME="RM03700SS-32D">32d </A>
Evans DA.
Sheppard GS.
J. Org. Chem.
1990,
55:
5192
<A NAME="RM03700SS-32E">32e </A>
Evans DA.
Ratz AM.
Huff BE.
Sheppard GS.
J. Am. Chem. Soc.
1995,
117:
3448
<A NAME="RM03700SS-32F">32f </A>
Evans DA.
Kim AS.
Metternich R.
Novack VJ.
J. Am. Chem. Soc.
1998,
120:
5921
<A NAME="RM03700SS-33A">33a </A>
Fillipini M.-H.
Rodriguez J.
Synth. Commun.
1995,
25:
245
<A NAME="RM03700SS-33B">33b </A>
We have also shown that treating 1d with 1 equiv DBU in refluxing MeOH for 48 h or stirring at r. t. for 3 d gave the
open chain ketoamide 11 (Figure 2).
<A NAME="RM03700SS-34A">34a </A>
Crandall JK.
Arrington JP.
Hen J.
J. Am. Chem. Soc.
1967,
89:
6208
<A NAME="RM03700SS-34B">34b </A>
Nakano T.
Irifune S.
Umano S.
Inada A.
Ishii Y.
Ogawa M.
J. Org. Chem.
1987,
52:
2239
<A NAME="RM03700SS-35">35 </A>
While 1c was totally unreactive, 1a gave methyl adipate resulting from a retro-Dieckmann ring cleavage, see ref. 33.
<A NAME="RM03700SS-36">36 </A>
The dimethoxy acetal function resulted from a trans -acetalization of the ethoxy enol ether under the reaction conditions. Methyl adipate
(35 %) resulting from a retro-Dieckmann ring cleavage of 1a was also formed.
For efficient preparations from the corresponding ketoesters, see:
<A NAME="RM03700SS-37A">37a </A>
Cossy J.
Thellend A.
Synthesis
1989,
753
<A NAME="RM03700SS-37B">37b </A>
Mottet C.
Hamelin O.
Garavel G.
Deprés JP.
Greene AE.
J. Org. Chem.
1999,
64:
1380
<A NAME="RM03700SS-37C">37c </A>
Ponde DE.
Deshpande VH.
Bulbule VJ.
Sudalai A.
Gajare AS.
J. Org. Chem.
1998,
63:
1058
<A NAME="RM03700SS-38A">38a </A>
Cossy J.
Bouzide A.
Pfau M.
J. Org. Chem.
1997,
62:
7106 and references cited therein
<A NAME="RM03700SS-38B">38b </A>
Cossy J.
Bouzide A.
Leblanc C.
J. Org. Chem.
2000,
65:
7257
<A NAME="RM03700SS-39">39 </A>
Carey FA.
Sundberg RJ.
Advanced Organic Chemistry, Part B
Plenum Press;
1977.
3. An alternative mechanism involving the formation of the corresponding dianion,
which is known to react selectively at the γ-position with various electrophiles,7,8,11,12
cannot be ruled out totally, although it can hardly be accommodated with the protic
medium and with the fact that a substoichiometric amount of DBU is sufficient for
the transformation to occur (vide supra)
For regioselective aldolization at the less hindered site in alkyl substituted unsymmetrical
ketones via equilibration of their potassium enolates, see:
<A NAME="RM03700SS-40A">40a </A>
Quesnel Y.
Bidois-Sery L.
Poirier J.-M.
Duhamel L.
J. Org. Chem.
1998,
63:
3793
<A NAME="RM03700SS-40B">40b </A>
Duhamel P.
Cahard D.
Quesnel Y.
Poirier J.-M.
J. Org. Chem.
1996,
61:
2232
<A NAME="RM03700SS-41">41 </A>
Habi H.
Gravel D.
Tetrahedron Lett.
1994,
35:
4315
<A NAME="RM03700SS-42">42 </A>
Heilbron I.
Jones ERH.
Richardson RW.
Sondheimer F.
J. Am. Chem. Soc.
1949,
71:
737
<A NAME="RM03700SS-43">43 </A>
Black GP.
Dinon F.
Fratucello S.
Murphy PJ.
Nielsen M.
Williams HL.
Walshe NDA.
Tetrahedron Lett.
1997,
38:
8561
<A NAME="RM03700SS-44">44 </A>
Attempts to extend the Robinson annulation using various experimental conditions including
the use of MeONa+ -MeOH, K2 CO3 -MeOH or acetone, and pyrrolidine in refluxing benzene or toluene, were unsuccessful
due to the retro-Michael reaction.
<A NAME="RM03700SS-45">45 </A>
Still WC.
Hahn M.
Mitra A.
J. Org. Chem.
1978,
43:
2923
<A NAME="RM03700SS-46">46 </A>
Marx JN.
Norman LR.
J. Org. Chem.
1975,
40:
1602