Abstract
Polyether units are a frequent heterocyclic fragment present in numerous natural products
of great biological importance and constitute significant synthons for the synthesis
of pharmacologically relevant compounds. Likewise, compounds having stereochemically
defined alkyl-branched hydrocarbon chains are widespread in nature and the development
of new synthetic methodologies to achieve their preparation in high yields and levels
of stereocontrol is currently a challenging endeavour in organic synthesis. In this
account, we describe our own approach to the stereoselective synthesis of bioactive
compounds using the Nicholas reaction, the discovery of unexpected reaction pathways
as well as some unreported results. The scope of the title reaction, within our research
interests, and its synthetic applications are outlined. Reference to important related
work from others in the field is also included.
1 Introduction
2 Synthesis of Symmetrical and Unsymmetrical Linear Propargylic Ethers
3 Synthesis of Cyclic Propargylic Ethers
3.1 Primary and Secondary Alcohols as Nucleophiles
3.2 Epoxides as Nucleophiles
4 Asymmetric Intermolecular Nicholas Reaction
5 Synthesis of Homopropargylic Ketones
6 Intramolecular Propargylic Reduction
7 Summary
Key words
alkynes - cobalt complexes - Nicholas reaction - stereoselective synthesis - natural
products - ethers
References and Notes <A NAME="RA43206ST-1">1 </A>
Present address: Departamento de Química Orgánica, Universidad Autónoma de Madrid,
28049 Madrid, Spain.
<A NAME="RA43206ST-2">2 </A>
Present address: Phenomix Corporation, 5871 Oberlin Dr., San Diego, CA 92126, U.S.A.
<A NAME="RA43206ST-3A">3a </A>
Nicolaou KC.
Sorensen EJ. In Classics in Total Synthesis
Wiley-VCH;
Weinheim:
1996.
<A NAME="RA43206ST-3B">3b </A>
Nicolaou KC.
Snyder SA. In Classics in Total Synthesis
Vol. 2:
Wiley-VCH;
Weinheim:
2003.
<A NAME="RA43206ST-4A">4a </A>
Asymmetric Synthesis
Morrison JD.
Academic Press;
New York:
1985.
<A NAME="RA43206ST-4B">4b </A>
Comprehensive Asymmetric Catalysis
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
New York:
1999.
<A NAME="RA43206ST-5A">5a </A>
Yasumoto T.
Murata M.
Chem. Rev.
1993,
93:
1897
<A NAME="RA43206ST-5B">5b </A>
Gallimore AR.
Spencer JB.
Angew. Chem. Int. Ed.
2006,
45:
4406
For recent reviews on the synthesis of marine polycyclic ethers, see:
<A NAME="RA43206ST-6A">6a </A>
Inoue M.
Chem. Rev.
2005,
105:
4379
<A NAME="RA43206ST-6B">6b </A>
Nakata T.
Chem. Rev.
2005,
105:
4314
<A NAME="RA43206ST-7">7 </A>
Álvarez E.
Díaz MT.
Pérez R.
Ravelo JL.
Regueiro A.
Vera JA.
Zurita D.
Martín JD.
J. Org. Chem.
1994,
59:
2848
<A NAME="RA43206ST-8A">8a </A>
Nicolaou KC.
Hwang C.-K.
Duggan ME.
Reddy KB.
Marron BE.
Macgarry DG.
J. Am. Chem. Soc.
1986,
108:
6800
<A NAME="RA43206ST-8B">8b </A>
Schreiber SL.
Kelly SE.
Porco JA.
Sammakia T.
Suh EM.
J. Am. Chem. Soc.
1988,
110:
6210
<A NAME="RA43206ST-8C">8c </A>
Robinson RA.
Clark JS.
Holmes AB.
J. Am. Chem. Soc.
1993,
115:
10400
<A NAME="RA43206ST-9">9 </A>
Kotsuki H.
Synlett
1992,
97
<A NAME="RA43206ST-10A">10a </A>
Yamada J.
Asano T.
Kadota I.
Yamamoto Y.
J. Org. Chem.
1990,
55:
6066
<A NAME="RA43206ST-10B">10b </A>
Fum GC.
Grubbs RH.
J. Am. Chem. Soc.
1992,
114:
5426
<A NAME="RA43206ST-10C">10c </A>
Berger D.
Overman LE.
Renhowe PA.
J. Am. Chem. Soc.
1993,
31:
9305
<A NAME="RA43206ST-11A">11a </A>
Boivin TLB.
Tetrahedron
1987,
43:
3309
<A NAME="RA43206ST-11B">11b </A>
Nicolaou KC.
Prasad CVC.
Somers PK.
Hwang C.-K.
J. Am. Chem. Soc.
1989,
111:
5335
<A NAME="RA43206ST-11C">11c </A>
Suzuki T.
Sato O.
Hirama M.
Tetrahedron Lett.
1990,
37:
4349
<A NAME="RA43206ST-12">12 </A>
Dictionary of Natural Products
4th Suppl., Vol. 11:
Buckingham J.
Chapman & Hall;
New York:
1998.
<A NAME="RA43206ST-13">13 </A>
Comprehensive Organic Synthesis
Vol. 3:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
<A NAME="RA43206ST-14">14 </A>
Faulkner DJ.
Nat. Prod. Rep.
1999,
16:
155
<A NAME="RA43206ST-15A">15a </A>
Abiko A.
Masamune S.
Tetrahedron Lett.
1996,
37:
1081
<A NAME="RA43206ST-15B">15b </A>
Birkbeck AA.
Enders D.
Tetrahedron Lett.
1998,
39:
7823
<A NAME="RA43206ST-16A">16a </A>
Norte M.
Fernández JJ.
Padilla A.
Tetrahedron Lett.
1994,
35:
3413
<A NAME="RA43206ST-16B">16b </A>
Calter MA.
Guo X.
Liao W.
Org. Lett.
2001,
3:
1499
<A NAME="RA43206ST-16C">16c </A>
Calter MA.
Guo X.
Liao W.
J. Org. Chem.
2001,
66:
7500
For comprehensive reviews on the chemistry uses of cobalt-complexed propargylic cations
and related, see:
<A NAME="RA43206ST-17A">17a </A>
Nicholas KM.
Acc. Chem. Res.
1987,
20:
207
<A NAME="RA43206ST-17B">17b </A>
Welker ME.
Curr. Org. Chem.
2001,
5:
785
<A NAME="RA43206ST-17C">17c </A>
Green JR.
Curr. Org. Chem.
2001,
5:
809
<A NAME="RA43206ST-17D">17d </A>
Müller TJJ.
Eur. J. Org. Chem.
2001,
2021
<A NAME="RA43206ST-17E">17e </A>
Teobald BJ.
Tetrahedron
2002,
58:
4133
<A NAME="RA43206ST-17F">17f </A>
Fryatt R.
Christie SDR.
J. Chem. Soc., Perkin Trans. 1
2002,
447
<A NAME="RA43206ST-17G">17g </A> For an interesting study on site selectivity of nucleophile incorporation in
3-acetoxycyclohept-1-en-4-ynedicobalt hexacarbonyl, see:
DiMartino J.
Green JR.
Tetrahedron
2006,
62:
1402
<A NAME="RA43206ST-18">18 </A>
Gachkova N.
Cassel J.
Leue S.
Kann N.
J. Comb. Chem.
2005,
7:
449 ; and references therein
<A NAME="RA43206ST-19A">19a </A>
Schore NE. In
Comprehensive Organometallic Chemistry II
Vol. 12:
Hegedus LS.
Pergamon;
Oxford:
1995.
Chapter 7.2.
p.403
<A NAME="RA43206ST-19B">19b </A>
Krafft ME.
Cheung YY.
Wright C.
Cali R.
J. Org. Chem.
1996,
61:
3912-3915 ; and references cited therein
<A NAME="RA43206ST-20">20 </A> For the first approach to the induction of enantioselectivity in the Nicholas
C-C coupling version, see:
Montaña AM.
Cano M.
Tetrahedron
2002,
58:
933
<A NAME="RA43206ST-21">21 </A>
Schreiber SL.
Klimas MT.
Sammakia T.
J. Am. Chem. Soc.
1987,
109:
5749
<A NAME="RA43206ST-22">22 </A>
Muehldorf AV.
Guzmán-Pérez A.
Kluge AE.
Tetrahedron Lett.
1994,
35:
8755
<A NAME="RA43206ST-23">23 </A>
Melikan GC.
Bright S.
Monroe T.
Handcastle KI.
Ciurash J.
Angew. Chem., Int. Ed. Engl.
1998,
37:
161
<A NAME="RA43206ST-24">24 </A>
Bradley DH.
Khan MA.
Nicholas KM.
Organometallics
1989,
8:
554
<A NAME="RA43206ST-25">25 </A>
Caffyn AJM.
Nicholas KM.
J. Am. Chem. Soc.
1993,
115:
6438
<A NAME="RA43206ST-26">26 </A>
Betancort JM.
Martín VS.
Padrón JM.
Palazón JM.
Ramírez MA.
Soler MA.
J. Org. Chem.
1997,
62:
4570 ; and references cited therein
<A NAME="RA43206ST-27A">27a </A>
March J.
Advanced Organic Chemistry
John Wiley & Sons;
New York:
1992.
<A NAME="RA43206ST-27B">27b </A>
Brummond KM.
Kent JL.
Tetrahedron
2000,
56:
3263
<A NAME="RA43206ST-28">28 </A>
Jenner G.
Tetrahedron Lett.
1988,
29:
2445
<A NAME="RA43206ST-29">29 </A> For an extraordinary application of the Williamson reaction to the preparation
of alcohol protecting groups, see:
Green TW.
Protective Groups in Organic Synthesis
John Wiley & Sons;
New York:
1999.
<A NAME="RA43206ST-30">30 </A>
Díaz DD.
Martín VS.
Tetrahedron Lett.
2000,
41:
9993
<A NAME="RA43206ST-31">31 </A>
Díaz DD.
Martín T.
Martín VS.
Org. Lett.
2001,
3:
3289
<A NAME="RA43206ST-32">32 </A> For the first example of the synthesis of 1,4-difunctionalized but-2-yne complexes
by a double Nicholas reaction, see:
Seiichi T.
Takumichi S.
Kunio O.
Synlett
1992,
70
<A NAME="RA43206ST-33A">33a </A>
Palazón JM.
Martín VS.
Tetrahedron Lett.
1995,
36:
3549
<A NAME="RA43206ST-33B">33b </A>
Betancort JM.
Martín T.
Palazón JM.
Martín VS.
J. Org. Chem.
2003,
68:
3216
<A NAME="RA43206ST-34">34 </A> For an efficient synthesis of oxaspiro[m.n] skeletons based on the Nicholas reaction,
see:
Chisato M.
Haruhisa Y.
Misato S.
Miyoji H.
Tetrahedron
2002,
58:
2755
<A NAME="RA43206ST-35">35 </A>
Betancort JM.
Rodríguez CM.
Martín VS.
Tetrahedron Lett.
1998,
39:
9773
<A NAME="RA43206ST-36">36 </A> For the influence of a secondary carbinol to control the cyclization stereochemistry
in isolated rings, see:
Díaz DD.
Betancort JM.
Crisóstomo FRP.
Martín T.
Martín VS.
Tetrahedron
2002,
58:
1913
<A NAME="RA43206ST-37">37 </A>
Katsuki T.
Martín VS.
Organic Reactions
Vol. 48:
Paquette LA.
Wiley;
New York:
1996.
p.1-299
<A NAME="RA43206ST-38">38 </A>
Palazón JM.
Soler MA.
Martín VS.
Tetrahedron Lett.
1993,
34:
5471
<A NAME="RA43206ST-39">39 </A>
Ramírez MA.
Padrón JM.
Palazón JM.
Martín VS.
J. Org. Chem.
1997,
62:
4584
<A NAME="RA43206ST-40">40 </A>
Nicolaou KC.
Hwang C.-K.
Marron BE.
DeFress SA.
Couladourus EA.
Abe Y.
Carroll PJ.
Snyder JP.
J. Am. Chem. Soc.
1990,
112:
3040
<A NAME="RA43206ST-41">41 </A>
Crisóstomo FRP.
Carrillo R.
Martín T.
Martín VS.
Tetrahedron Lett.
2005,
45:
2829
<A NAME="RA43206ST-42">42 </A>
Díaz DD.
Ramírez MA.
Ceñal JP.
Saad R.
Tonn CE.
Martín VS.
Chirality
2003,
15:
148
<A NAME="RA43206ST-43">43 </A>
Takase M.
Morikawa T.
Abe H.
Inouye M.
Org. Lett.
2003,
5:
625
<A NAME="RA43206ST-44">44 </A>
Christie SDR.
Davoile RJ.
Elsegood MRJ.
Fryatt R.
Jones RCF.
Pritthard GJ.
Chem. Commun.
2004,
2474
<A NAME="RA43206ST-45">45 </A>
Lebold TP.
Carson CA.
Kerr MA.
Synlett
2006,
364
<A NAME="RA43206ST-46">46 </A>
Crisóstomo FRP.
Martín T.
Martín VS.
Org. Lett.
2004,
6:
565
<A NAME="RA43206ST-47">47 </A>
(a) Unpublished results. (b) X-ray data can be obtained directly from the authors
upon request.
<A NAME="RA43206ST-48">48 </A>
Davies JE.
Hope-Weeks LJ.
Mays MJ.
Raithby PR.
Chem. Commun.
2000,
1411
<A NAME="RA43206ST-49">49 </A>
Shea KM.
Closser KD.
Quintal MM.
J. Org. Chem.
2005,
70:
9088
<A NAME="RA43206ST-50A">50a </A>
Lee H.
Kim H.
Baek S.
Kim S.
Kim D.
Tetrahedron Lett.
2003,
44:
6609
<A NAME="RA43206ST-50B">50b </A>
Carreno MC.
Mazery RD.
Urbano A.
Colobert F.
Solladié G.
Org. Lett.
2004,
6:
297
<A NAME="RA43206ST-50C">50c </A>
Lee HJ.
Kim HS.
Yoon T.
Kim B.
Kim S.
Kim H.-D.
Kim D.
J. Org. Chem.
2005,
70:
8723
<A NAME="RA43206ST-51">51 </A>
We had difficulties separating both diastereoisomers. At the present time we cannot
ensure which isomer is predominant.
<A NAME="RA43206ST-52">52 </A>
Montmorillonite K-10 has been recently reported as a convenient acid component in
the Nicholas reaction, see ref. 41.
<A NAME="RA43206ST-53">53 </A>
Ortega N.
Martín T.
Martín VS.
Org. Lett.
2006,
8:
871
The endo -complexes need reductive decomplexation procedures to successfully achieve the synthesis
of the corresponding cyclic systems:
<A NAME="RA43206ST-54A">54a </A>
Hosokawa S.
Isobe M.
Tetrahedron Lett.
1998,
39:
2609
<A NAME="RA43206ST-54B">54b </A>
Nakamura T.
Matsui T.
Tanino K.
Kuwajima I.
J. Org. Chem.
1997,
62:
3032
<A NAME="RA43206ST-55">55 </A>
Young DG.
Burlison JA.
Peters U.
J. Org. Chem.
2003,
68:
3494
<A NAME="RA43206ST-56">56 </A>
Kira K.
Tanda H.
Hamajima A.
Baba T.
Takai S.
Isobe M.
Tetrahedron
2002,
58:
6485 ; and references cited therein
<A NAME="RA43206ST-57A">57a </A>
Isobe M.
Yenjai C.
Tanaka S.
Synlett
1994,
11:
916
<A NAME="RA43206ST-57B">57b </A>
Yenjai C.
Isobe M.
Tetrahedron
1998,
54:
916
<A NAME="RA43206ST-57C">57c </A>
Isobe M.
Hosokawa S.
Kira K.
Chem. Lett.
1996,
473
<A NAME="RA43206ST-57D">57d </A>
Hosokawa S.
Isobe M.
J. Org. Chem.
1999,
64:
37
<A NAME="RA43206ST-57E">57e </A>
Saeeng R.
Isobe M.
Tetrahedron Lett.
1999,
40:
1911
<A NAME="RA43206ST-57F">57f </A> For a review, see:
Isobe M.
Nishizawa R.
Hosokawa S.
Nishikawa T.
Chem. Commun.
1998,
2665
<A NAME="RA43206ST-58A">58a </A>
Mukai C.
Sugimoto Y.-I.
Miyazawa K.
Yamaguchi S.
Hanaoka M.
J. Org. Chem.
1998,
63:
6281
<A NAME="RA43206ST-58B">58b </A>
Mukai C.
Yamaguchi S.
Ichiryu T.
Hanaoka M.
J. Org. Chem.
2000,
65:
6761
<A NAME="RA43206ST-59">59 </A>
Mukai C.
Yamaguchi S.
Sugimoto Y.
Miyakoshi N.
Kasamatsu E.
Hanaoka M.
Tetrahedron
2000,
56:
2203
<A NAME="RA43206ST-60">60 </A>
Quintal MM.
Closser KD.
Shea KM.
Org. Lett.
2004,
6:
4949
<A NAME="RA43206ST-61">61 </A>
Schreiber SL.
Sammakia T.
Crowe WE.
J. Am. Chem. Soc.
1986,
108:
3128
<A NAME="RA43206ST-62">62 </A>
These complexes possess an outstanding resolution under silica gel chromatography
and both diastereoisomers can be readily separated in this way.
In order to avoid elimination by-products, all reactions were carried out at -20 °C.
See:
<A NAME="RA43206ST-63A">63a </A>
Saksena AK.
Green MJ.
Mangiaracina P.
Wong JK.
Kreutner Gulbenkian AR.
Tetrahedron Lett.
1985,
26:
6423
<A NAME="RA43206ST-63B">63b </A>
Melikyan GG.
Mineif O.
Vostrowsky O.
Bestmann HJ.
Synthesis
1991,
633
<A NAME="RA43206ST-63C">63c </A>
Berger D.
Overman LE.
J. Am. Chem. Soc.
1997,
119:
2446
<A NAME="RA43206ST-64A">64a </A>
Mancuso AJ.
Huang S.-L.
Swern D.
J. Org. Chem.
1978,
43:
2480
<A NAME="RA43206ST-64B">64b </A>
Schmieder-van de Vondervoort L.
Bouttemy S.
Padrón JM.
Le Bras J.
Muzart J.
Alsters PL.
Synlett
2002,
243
<A NAME="RA43206ST-65">65 </A>
Majetich G.
Zhang Y.
Dreyer G.
Tetrahedron Lett.
1993,
34:
449
<A NAME="RA43206ST-66A">66a </A>
Kende AS.
Fludzinski P.
Hill JH.
Swenson W.
Clardy J.
J. Am. Chem. Soc.
1984,
106:
3551
<A NAME="RA43206ST-66B">66b </A>
Nagasawa T.
Taya K.
Kitamura M.
Suzuki K.
J. Am. Chem. Soc.
1996,
118:
8949
<A NAME="RA43206ST-67">67 </A>
Soler MA.
Martín VS.
Tetrahedron Lett.
1999,
40:
2815
<A NAME="RA43206ST-68">68 </A>
Saksena AK.
Green MJ.
Mangiaracina P.
Wong JK.
Kreutner W.
Gulbenkian AR.
Tetrahedron Lett.
1985,
26:
6423
<A NAME="RA43206ST-69">69 </A>
Díaz DD.
Martín VS.
Tetrahedron Lett.
2000,
41:
743
<A NAME="RA43206ST-70">70 </A>
Díaz DD.
Martín VS.
Org. Lett.
2000,
2:
335
<A NAME="RA43206ST-71A">71a </A>
Brandsma L. In
Preparative Acetylenic Chemistry
Elsevier;
Amsterdam:
1988.
p.39-40
<A NAME="RA43206ST-71B">71b </A>
Comprehensive Organic Synthesis
Vol. 3:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
p.271-292
<A NAME="RA43206ST-72">72 </A>
Díaz DD.
Ramírez MA.
Martín VS.
Chem. Eur. J.
2006,
12:
2593
<A NAME="RA43206ST-73">73 </A>
Díaz DD.
Martín VS.
J. Org. Chem.
2000,
65:
7896
<A NAME="RA43206ST-74">74 </A>
Díaz DD.
Crisóstomo FRP.
Martín VS.
Isr. J. Chem.
2001,
41:
297