Synthesis 2007(10): 1584-1586  
DOI: 10.1055/s-2007-965954
PSP
© Georg Thieme Verlag Stuttgart · New York

Simple and Efficient Preparation of Reagents for Thiopyran Introduction:
Methyl Tetrahydro-4-oxo-2H-thiopyran-3-carboxylate, Tetrahydro-4H-thiopyran-4-one, and 3,6-Dihydro-4-trimethylsilyloxy-2H-thiopyran

Dale E. Ward*, M. Abdul Rasheed, H. Martin Gillis, Garrison E. Beye, Vishal Jheengut, George T. Achonduh
Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada
Fax: +1(306)9664730; e-Mail: [email protected];
Further Information

Publication History

Received 4 October 2006
Publication Date:
28 February 2007 (online)

Abstract

Tetrahydro-4H-thiopyran-4-one was prepared in >75% yield by treatment of dimethyl 3,3′-thiobispropanoate with NaOMe (generated in situ) in THF solution and decarboxylation of the resulting methyl tetrahydro-4-oxo-2H-thiopyran-3-carboxylate in refluxing 10% aqueous H2SO4. Reaction of tetrahydro-4H-thiopyran-4-one with Me3SiCl and Et3N in CHCl3 gave the corresponding trimethylsilyl enol ether in near quantitative yield. The prepared reagents are useful for the synthesis of thiopyran-containing compounds.

    References

  • 1a Press JB. Russell RK. Christiaens LEE. In Comprehensive Heterocyclic Chemistry II   Vol. 2:  Bird CW. Elsevier; Oxford: 1997. 
  • 1b Ingall AH. In Comprehensive Heterocyclic Chemistry II   Vol. 5:  McKillop A. Pergamon; Oxford: 1997. 
  • 1c Vedejs E. Krafft GA. Tetrahedron  1982,  38:  2857 
  • For an overview and list of references, see:
  • 2a Samuel R. Nair SK. Asokan CV. Synlett  2000,  1804 
  • 2b Ward DE. Gai Y. Lai Y. Synlett  1996,  261 
  • 3 Review: Vartanyan RS. Arm. Khim. Zh.  1985,  38:  166 
  • 4 Aldrich Chemical Co., 2005-2006: Cdn $174/5 g of 3. Using the procedure described herein, we estimate the cost of materials (solvents, reagents and other materials) for the preparation of 3 to be ca. $1/g (50 g scale)
  • 5a Ward DE. Guo C. Sasmal PK. Man CC. Sales M. Org. Lett.  2000,  2:  1325 
  • 5b Ward DE. Sales M. Man CC. Shen J. Sasmal PK. Guo C. J. Org. Chem.  2002,  67:  1618 
  • 5c Ward DE. Jheengut V. Akinnusi OT. Org. Lett.  2005,  7:  1181 
  • 5d Ward DE. Gillis HM. Akinnusi OT. Rasheed MA. Saravanan K. Sasmal PK. Org. Lett.  2006,  8:  2631 
  • From N-methyl-4-piperidone:
  • 6a Johnson PY. Berchtold GA. J. Org. Chem.  1970,  35:  584 
  • 6b Unkovskii BV. Psal’ti FI. Khim. Geterotsikl. Soedin., Sb.  1970,  2:  174 ; Chem. Abstr. 1972, 77, 114188
  • 6c Garst ME. McBride BJ. Johnson AT. J. Org. Chem.  1983,  48:  8 
  • From 1,5-dibromo-3-pentanone:
  • 6d Sviridov SV. Vasilevskii DA. Kulinkovich OG. Zh. Org. Khim.  1991,  27:  1431 
  • 7a Bennett GM. Scorah LVD. J. Chem. Soc.  1927,  194 
  • 7b Fehnel EA. Carmack M. J. Am. Chem. Soc.  1948,  70:  1813 
  • 8a Naylor RF. J. Chem. Soc.  1949,  2749 
  • 8b Onesta R. Castelfranchi G. Gazz. Chim. Ital.  1959,  89:  1127 
  • 8c Casy G. Sutherland AG. Taylor RJK. Urben PG. Synthesis  1989,  767 
  • 8d Rule NG. Detty MR. Kaeding JE. Sinicropi JA. J. Org. Chem.  1995,  60:  1665 
  • 8e Matsuyama H. Miyazawa Y. Takei Y. Kobayashi M. J. Org. Chem.  1987,  52:  1703 
  • 8f Chowdhury AZMS. Khandker MMR. Bhuiyan MMH. Hossain MK. Pak. J. Sci. Ind. Res.  2001,  44:  63 
  • 9a Barkenbus C. Midkiff VC. Newman RM. J. Org. Chem.  1951,  16:  232 
  • 9b Traverso G. Chem. Ber.  1958,  91:  1224 
  • 9c Parham WE. Christensen L. Groen SH. Dodson RM. J. Org. Chem.  1964,  29:  2211 
  • 9d Harada K, Suginose R, and Kashiwagi K. inventors; Japanese Patent  99198350.  1999; Chem. Abstr. 2001, 134: 131428
  • 10a Commercially available (e.g., Aldrich Chemical Co., 2005-2006: Cdn $70/L) or readily prepared from methyl acrylate and H2S: Gershbein LL. Hurd CD. J. Am. Chem. Soc.  1947,  69:  241 
  • 10b

    See also ref. 8e.

  • 11a Kashiwagi T, Murakami M, Isaka I, and Ozasa T. inventors; Japanese Patent 74  108119.  1974; Chem. Abstr. 1976, 85: 78006
  • 11b Duus F. Tetrahedron  1981,  37:  2633 
  • 11c Liu HJ. Ngooi TK. Can. J. Chem.  1982,  60:  437 
  • 11d Dowd P. Choi SC. Tetrahedron  1991,  47:  4847 
  • 11e Tamai S. Ushirogochi H. Sano S. Nagao Y. Chem. Lett.  1995,  295 
  • 11f Ghosh AK. Liu W. J. Org. Chem.  1995,  60:  6198 
  • 11g Conroy JL. Sanders TC. Seto CT. J. Am. Chem. Soc.  1997,  119:  4285 
  • 11h Li C.-J. Chen D.-L. Synlett  1999,  735 
  • 13a Aoki S. Fujimura T. Nakamura E. J. Am. Chem. Soc.  1992,  114:  2985 
  • 13b Evans PA. Modi DP. J. Org. Chem.  1995,  60:  6662 
  • 13c Biondi S. Piga E. Rossi T. Vigelli G. Bioorg. Med. Chem. Lett.  1997,  7:  2061 
  • 13d Karisalmi K. Rissanen K. Koskinen AMP. Org. Biomol. Chem.  2003,  1:  3193 
  • 13e Karisalmi K. Koskinen AMP. Nissinen M. Rissanen K. Tetrahedron  2003,  59:  1421 
  • 14 House HO. Czuba LJ. Gall M. Olmstead HD. J. Org. Chem.  1969,  34:  2324 
12

A reaction using 1.1 equiv of NaOMe did not go to completion within 5 h (ca. 90% conversion).

15

Na metal was cut into pieces weighing ca. 50-100 mg (3-5 mm per side). The rate of Na consumption depends on the size of pieces; with larger pieces, more time is required to reach 90% conversion.

16

A few specks of Na metal may remain at this point.

17

The presence of small amounts of 1 (<1%) and its corresponding half-acid (1-2%) were detected by 13C NMR and confirmed by spiking with authentic samples.