References and Notes
For a review of the alkylation of acetal, see:
<A NAME="RS06406ST-1A">1a</A>
Mukaiyama T.
Murakami M.
Synthesis
1987,
1043
<A NAME="RS06406ST-1B">1b</A>
Normant JF.
Alexakis A.
Ghribi A.
Mageney P.
Tetrahedron
1989,
45:
507
<A NAME="RS06406ST-1C">1c</A>
Hojo M.
Ushioda N.
Hosomi A.
Tetrahedron Lett.
2004,
45:
4499
<A NAME="RS06406ST-1D">1d</A>
Lindell SD.
Elliott JD.
Johnson WS.
Tetrahedron Lett.
1984,
25:
3947
<A NAME="RS06406ST-1E">1e</A>
Yuan T.-M.
Yeh S.-M.
Hsieh Y.-T.
Luh T.-Y.
J. Org. Chem.
1994,
59:
8192
<A NAME="RS06406ST-2A">2a</A>
Fujioka H.
Sawama Y.
Murata N.
Okitsu T.
Kubo O.
Matsuda S.
Kita Y.
J. Am. Chem. Soc.
2004,
126:
11800
<A NAME="RS06406ST-2B">2b</A>
Fujioka H.
Okitsu T.
Sawama Y.
Murata N.
Li R.
Kita Y.
J. Am. Chem. Soc.
2006,
128:
5930
<A NAME="RS06406ST-2C">2c</A>
After our previous work (ref. 2a), we found that the use of 2,4,6-collidine in place
of 2,6-lutidine gave better results in deprotection of acetals (ref. 2b). Then 2,4,6-collidine
was used as a base in this work.
<A NAME="RS06406ST-3">3</A>
Gilman H.
Jones RG.
Woods LA.
J. Org. Chem.
1952,
17:
1630
For the representative reactions of organocopper reagents with achiral and/or chiral
acetals and ketals, see ref. 1b. See also:
<A NAME="RS06406ST-4A">4a</A>
Ghribi A.
Alexakis A.
Normant JF.
Tetrahedron Lett.
1984,
25:
3075
<A NAME="RS06406ST-4B">4b</A>
Ghribi A.
Alexakis A.
Normant JF.
Tetrahedron Lett.
1984,
25:
3079
<A NAME="RS06406ST-4C">4c</A>
Ghribi A.
Alexakis A.
Normant JF.
Tetrahedron Lett.
1984,
25:
3083
<A NAME="RS06406ST-4D">4d</A>
Guindon Y.
Simoneau B.
Yoakim C.
Gorys V.
Lemieux R.
Ogilvie WW.
Tetrahedron Lett.
1991,
32:
5453
<A NAME="RS06406ST-4E">4e</A>
Guindon Y.
Ogilvie WW.
Bordeleau J.
Cui WL.
Durkin K.
Gorys V.
Juteau H.
Lemieux R.
Liotta D.
Simoneau B.
Yoakim C.
J. Am. Chem. Soc.
2003,
125:
428
For recent reviews dealing with the mechanism of the Gilman reaction and structure
of the Gilman reagent, see:
<A NAME="RS06406ST-4F">4f</A>
Nakamura E.
Mori S.
Angew. Chem. Int. Ed.
2000,
39:
3750
<A NAME="RS06406ST-4G">4g</A>
Smith RAJ.
Vellekoop AS.
Advances in Detailed Reaction Mechanisms
Vol. 3:
Coxon J. M., JAI Press;
Greenville, CT:
1994.
p.79-130
<A NAME="RS06406ST-4H">4h</A>
Perlmutter P.
Conjugate Addition Reactions in Organic Synthesis
Baldwin JE.
Magnus PD.
Pergamon Press;
Oxford:
1992.
p.10-13
<A NAME="RS06406ST-5">5</A>
Typical Reaction Procedure: Reaction of Acetal 1a and Ph
2
CuLi (Table 1, Entry 5).
To a solution of an acetal 1a (36.2 mg, 0.179 mmol) in CH2Cl2 (1.79 mL) were added 2,4,6-collidine (71 µL, 0.537 mmol) and TESOTf (81 µL, 0.358
mmol) at 0 °C under N2 atmosphere and the reaction mixture was stirred at the same temperature. After checking
for the disappearance of 1a by TLC (0.5 h), Ph2CuLi (prepared according to Johnson’s method
[8]
) was added to the reaction mixture and stirred for 0.5 h. Disappearance of the polar
component was ascertained by TLC analysis. The reaction mixture was quenched with
sat. aq NH4Cl and stirred for more than 10 min at r.t. The mixture was extracted with CH2Cl2, the organic layer was washed with brine, dried over Na2SO4, filtered, and evaporated in vacuo. The residue was purified by flash SiO2 column chromatography using hexane-Et2O (100:1) to give 2a (41.5 mg, 93%) as a colorless oil.
(1-Methoxydecyl)benzene (2a): colorless oil. IR (KBr): 1493, 1454, 1101 cm-1. 1H NMR (300 MHz, CDCl3): δ = 0.87 (3 H, t, J = 6.0 Hz), 1.12-1.45 (14 H, m), 1.54-1.68 (1 H, m), 1.72-1.87 (1 H, m), 3.20 (3 H,
s), 4.07 (1 H, t, J = 6.8 Hz), 7.23-7.37 (5 H, m). 13C NMR (75 MHz, CDCl3): δ = 14.1, 22.7, 25.8, 29.3, 29.5 (2 C), 29.6, 31.9, 38.2, 56.6, 84.2, 126.7, 127.4,
128.3, 142.6. Anal. Calcd for C17H28O: C, 82.20; H, 11.36. Found: C, 82.23; H, 11.42.
<A NAME="RS06406ST-6">6</A>
Negishi E.
Swanson DR.
Rousset CJ.
J. Org. Chem.
1990,
55:
5406
<A NAME="RS06406ST-7">7</A>
Johnson CR.
Dutra GA.
J. Am. Chem. Soc.
1973,
95:
7783
<A NAME="RS06406ST-8">8</A>
Johnson CR.
Dutra GA.
J. Am. Chem. Soc.
1973,
95:
7777