Synlett 2006(18): 2947-2952  
DOI: 10.1055/s-2006-951505
LETTER
© Georg Thieme Verlag Stuttgart · New York

The Heck Reaction of β-Arylacrylamides: An Approach to 4-Aryl-2-quinolones

Roberta Berninia, Sandro Cacchi*b, Ilse De Salveb, Giancarlo Fabrizi*b
a Dipartimento A.B.A.C, Università degli Studi della Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy
b Dipartimento di Studi di Chimica e Tecnologia delle Sostanze Biologicamente Attive, Università degli Studi ‘La Sapienza’, P. le A. Moro 5, 00185 Rome, Italy
Fax: +39(06)49912780.; e-Mail: sandro.cacchi@uniroma1.it;
Further Information

Publication History

Received 4 April 2006
Publication Date:
25 October 2006 (online)

Abstract

The Heck reaction of β-arylacrylamides with aryl iodides afforded the corresponding vinylic substitution products usually in high yields. The nature of β-substituents, aryl iodides and substituents at the nitrogen atom influences the stereochemical outcome. N,N-Dimethyl-β-arylacrylamides gave vinylic substitution products with higher stereoselectivity than the corresponding N-unsubstituted β-arylacrylamides. β-Arylacrylamides containing ortho-substituents led to the formation of only one stereoisomer. The procedure was used to prepare 4-aryl-2-quinolones from β-(o-bromophenyl)acrylamide through a sequential Heck reaction and copper-catalyzed cyclization process.

    References and Notes

  • 1a Amorese A. Arcadi A. Bernocchi E. Cacchi S. Cerrini S. Fedeli W. Ortar G. Tetrahedron  1989,  45:  813 
  • 1b Arcadi A. Cacchi S. Fabrizi G. Marinelli F. Pace P. Tetrahedron  1996,  56:  6983 
  • 1c Cacchi S. Ciattini PG. Morera E. Pace P. Synlett  1996,  545 
  • 1d Arcadi A. Cacchi S. Fabrizi G. Marinelli F. Pace P. Synlett  1996,  568 
  • 1e Cacchi S. Fabrizi G. Goggiamani A. ARKIVOC  2003,  (viii):  58 
  • 2a Moreno-Mañas M. Pérez M. Pleeixats R. Tetrahedron Lett.  1999,  37:  7449 
  • 2b Gürtler C. Buchwald SL. Chem. Eur. J.  1999,  5:  3107 
  • 2c Blettner CG. König WA. Stenzel W. Shotten T. Tetrahedron Lett.  1999,  40:  2101 
  • 2d Calò V. Nacci A. Monopoli A. Lopez L. di Cosmo A. Tetrahedron  2001,  57:  6071 
  • 2e Littke AF. Fu GC. J. Am. Chem. Soc.  2001,  123:  6989 
  • 2f Battistuzzi G. Cacchi S. Fabrizi G. Synlett  2002,  439 
  • 2g Caló V. Nacci A. Monopoli A. Laera S. Cioffi N. J. Org. Chem.  2003,  68:  2929 
  • 3 Cacchi S. Arcadi A. J. Org. Chem.  1983,  48:  4236 
  • 4 Hiroshige M. Hauske JR. Zhou P. Tetrahedron Lett.  1995,  36:  4567 
  • 5 Botella L. Nájera C. J. Org. Chem.  2005,  70:  4360 
  • See, for example:
  • 6a Kadin SB. inventors; US  4342781.  ; Chem. Abstr. 2001, 97, 215790
  • 6b Morwick TM, and Paget CJ. inventors; EP  91795.  ; Chem. Abstr. 1983, 100, 103341
  • 6c Curtze J, and Krummel G. inventors; DE  3817711.  ; Chem. Abstr. 1989, 112, 235327
  • 7 β-Arylacrylamides were prepared in almost quantitative yields from 1 equiv of aryl iodides and 1.1 equiv of acryl-amide or N,N-dimethylacrylamide in MeCN at 100 °C in the presence of 0.01 equiv of the Herrmann catalyst and 3 equiv of Et3N: Herrmann WA. Brossmer K. Reisinger C.-P. Priermeier T. Beller M. Fischer H. Angew. Chem., Int. Ed. Engl.  1995,  34:  1844 
  • 8 Jeffery T. Tetrahedron Lett.  1985,  26:  2667 
  • 10 Lane BS. Sames D. Org. Lett.  2004,  6:  2897 
  • 12 Hay LA. Koenig TM. Ginah FO. Copp JD. Mitchell D. J. Org. Chem.  1998,  63:  5050 
  • For some recent references, see:
  • 13a Dhanak D, Kaura AC, and Shaw A. inventors; WO  2001085172.  ; Chem. Abstr. 2001, 135, 357951
  • 13b Norman P. Curr. Opin. Invest. Drugs  2002,  3:  313 
  • 13c Venet M. End D. Angibaud P. Curr. Top. Med. Chem.  2003,  3:  1095 
  • 13d van Cutsem E. van de Velde H. Karasek P. Oettle H. Vervenne WL. Szawlowski A. Schoffski P. Post S. Verslype C. Neumann H. Safran H. Humblet Y. Perez RJ. Ma Y. von Hoff D. J. Clin. Oncol.  2004,  22:  1430 
  • 13e Freeman GA. Andrews CW. Hopkins AL. Lowell GS. Schaller LT. Cowan JR. Gonzales SS. Koszalka GW. Hazen RJ. Boone LR. Ferris RG. Creech KL. Roberts GB. Short SA. Weaver K. Reynolds DJ. Milton J. Ren J. Stuart DI. Stammers DK. Chan JH. J. Med. Chem.  2004,  47:  5923 
  • 13f Li Q. Woods KW. Wang W. Lin N.-H. Claiborne A. Gu W.-Z. Cohen J. Stoll VS. Hutchins C. Frost D. Rosenberg SH. Sham HL. Bioorg. Med. Chem. Lett.  2005,  15:  2033 
  • 14 Ley SV. Thomas AW. Angew. Chem. Int. Ed.  2003,  42:  5400 
  • 15 Klapars A. Buchwald SL. J. Am. Chem. Soc.  2002,  124:  14844 
9

Typical Procedure for the Reaction of β-Arylacrylamides with p -Iodoanisole.
To a stirred solution of 1h (0.113 g, 0.50 mmol), p-iodo-anisole (0.093 mg, 0.75 mmol) and Et3N (348 µL, 2.5 mmol), Pd(OAc)2 (0.006 g, 0.025 mmol) was added. The reaction mixture was stirred for 12 h at 100 °C. Then, the mixture was diluted with EtOAc and washed with H2O. The organic layer was dried over Na2SO4 and concentrated under reduced pressure. The residue was purified by chromatog-raphy (silica gel, 35 g; n-hexane-EtOAc, 30:70) to give 0.144 g (87% yield) of 2h: mp 163-165 °C. IR (KBr): 3294, 3177, 1654 cm-1. 1H NMR (CDCl3): δ = 7.69 (dd, J = 8.4, 1.33 Hz, 1 H), 7.43 (m, 1 H), 7.32-7.27 (m, 3 H), 7.23-7.21 (m, 2 H), 6.87-6.85 (m, 2 H), 6.49 (s, 1 H) 5.28-5.16 (d, 2 H),1.61 (s, 3 H). 13C NMR (CDCl3): δ = 167.2, 160.1, 148.6, 139.0, 132.8, 130.3, 130.2, 129.4, 128.1, 127.4, 122.3, 119.7, 113.6, 54.8. MS: m/z (rel. int.) = 332 (100) [M+], 334 (73), 252 (54). Anal. Calcd for C16H14BrNO2: C, 57.85; H, 4.25; Br, 24.05; N; 4.22. Found: C, 57.77; H, 4.28; Br, 24.02; N, 4.26.

11

Typical Procedure for the Reaction of β-Arylacrylamides with Ethyl p -Iodobenzoate. To a stirred solution of 1h (0.113 g, 0.50 mmol), ethyl p-iodobenzoate (209 µL, 1.25 mmol) and Et3N (348 µL, 2.5 mmol), Pd(OAc)2 (0.001 g, 0.005 mmol) was added. The reaction mixture was stirred for 24 h at 100 °C. Then, the mixture was diluted with EtOAc and washed with H2O. The organic layer was dried over Na2SO4 and concentrated under reduced pressure. The residue was purified by chromatog-raphy (silica gel, 35 g; n-hexane-EtOAc, 25:75) to give 0.152 g (82% yield) of 2ac: mp 235-237 °C. IR (KBr): 3338, 3181, 1668 cm-1. 1H NMR (CDCl3): δ = 8.03 (d, J = 8.3 Hz, 2 H), 7.69 (d, J = 8.4 Hz, 1 H), 7.45 (t, J = 7.6 Hz, 1 H), 7.35-7.30 (m, 4 H), 6.61 (s, 1 H) 5.32-5.25 (d, 2 H), 4.37 (q, J = 7.1 Hz, 2 H), 1.38 (t, J = 7.1 Hz, 3 H). 13C NMR (CDCl3): δ = 166.5, 165.5, 147.9, 142.1, 138.2, 132.9, 130.4, 130.3, 129.8, 129.3, 127.5, 126.6, 123.5, 122.2, 60.6, 13.8. MS: m/z (rel. int.) = 374 (50) [M+], 376 (100), 294 (34). Anal. Calcd for C18H16BrNO3: C, 57.77; H, 4.31; Br, 21.35; N; 3.74. Found: C, 57.69; H, 4.35; Br, 21.38; N, 3.70.

16

Typical Procedure for the Preparation of 2-Quinolones 4.
To a stirred solution of 1h (0.113 g, 0.50 mmol), p-iodo-anisole (0.093 g, 0.75 mmol) and Et3N (348 µL, 2.5 mmol), Pd(OAc)2 (0.006 g, 0.025 mmol) was added. The reaction mixture was stirred for 12 h at 100 °C. Then, the mixture was diluted with EtOAc and washed with H2O. The organic layer was dried over Na2SO4 and concentrated under reduced pressure. Then, 2 mL of dioxane, CuI (0.019 g, 0.1 mmol), NaI (0.149 g, 1 mmol), K3PO4 (0.212 g, 1 mmol), N,N-dimethylethylendiammine (21.3 µL, 0.2 mmol) and were added to the crude mixture. The mixture was stirred for 24 h at 120 °C. Then, the mixture was diluted with EtOAc and washed with a sat. NH4Cl solution. The organic layer was dried over Na2SO4 concentrated under reduced pressure. The residue was purified by chromatography (silica gel, 35 g; n-hexane-EtOAc, 30:70) to give 0.97 g (77% yield) of 4b: mp 196-198 °C. IR (KBr): 3131, 1672 cm-1. 1H NMR (DMSO-d 6): δ = 11.82 (s, 1 H), 7.51 (t, J = 8 Hz, 1 H), 7.44-7.36 (m, 4 H), 7.13-7.07 (m, 3 H), 6.34 (s, 1 H), 3.82 (s, 3 H). 13C NMR (DMSO-d 6): δ = 161.3, 159.6, 151.1, 139.3, 130.4, 130.1, 128.8, 126.2, 121.7, 120.9, 118.5, 115.8, 114.1, 55.2. MS: m/z (rel. int.) = 251 (100) [M+], 252 (25), 236 (25) 220 (12). Anal. Calcd for C16H13NO2: C, 76.48; H, 5.21; N; 5.57. Found: C, 76.55; H, 5.18; N, 5.53.