Abstract
Intramolecular glycosylation of a glycosyl acceptor temporarily tethered to the 2-hydroxyl group of the glycosyl donor, commonly referred to as Intramolecular Aglycon Delivery (IAD), potentially provides a solution to the perennial problem of how to synthesise 1,2-cis glycosidic linkages with complete stereocontrol. This account summarises developments in this area, focussing on the development within our group of intramolecular glycosylation based on allyl protecting groups (allyl IAD). Optimisation, the current scope and limitations, and further potential developments of allyl IAD are discussed herein.
-
1 Introduction
-
2 Intramolecular Aglycon Delivery (IAD): Previous Approaches
-
2.1 Synthesis of β-Mannosides
-
2.2 Synthesis of Other 1,2-cis Glycosides by IAD
-
3 NIS-mediated Hindsgaul IAD
-
4 Allyl IAD
-
4.1 Thioglycoside Donors
-
4.2 Glycosyl Fluoride Donors
-
4.3 Attempted Facile Synthesis of (1-4) Linked Disaccharides
-
4.4 Extension to Other Sugars and Protecting Group Patterns
-
4.5 Optimisation
-
4.6 Mechanistic Studies
-
4.7 Iterative Oligosaccharide Synthesis
-
5 Summary and Future Perspectives
Key words
carbohydrates - glycosylations - stereoselective - intramolecular aglycon delivery (IAD) - 1,2-cis-glycosides
References
1a
Varki A.
Glycobiology
1993,
3:
97
1b
Dwek RA.
Chem. Rev.
1996,
96:
683
2 For a series of articles outlining the potential of carbohydrates as therapeutic agents and also outlining recent advances in the fields of carbohydrate chemistry and glycobiology see: Science
2001,
291:
2338
For some recent reviews of oligosaccharide synthesis see:
3a
Boons G.-J.
Tetrahedron
1996,
52:
1095
3b
Davis BG.
J. Chem. Soc., Perkin Trans. 1
2000,
2137
4 See: Roth J.
Chem. Rev.
2002,
102:
285 ; and references contained therein
5 Our main interest in accessing tetrasaccharide 1 was in order to determine its solution conformation by a series of NMR experiments in a variety of different solvents. However, as an offshoot of any synthesis we undertook we also desired access to a variety of truncated and fluorescence labeled sub-structures for use in enzyme assays amongst other purposes.
6
Wulff G.
Röhle G.
Angew. Chem., Int. Ed. Engl.
1974,
13:
157
7 For a recent review on 1,2-cis glycosylation focussing on intermolecular approaches see: Demchenko AV.
Curr. Org. Chem.
2003,
7:
35
8
Ogawa T.
Nukada T.
Kitajima T.
Carbohydr. Res.
1983,
123:
C12
9a
Lemieux RU.
James K.
Nagabhushan TL.
Can. J. Chem.
1973,
51:
42
9b
Lemieux RU.
Hendriks KB.
Stick RV.
James K.
J. Am. Chem. Soc.
1975,
97:
4056
10 For a recent review on intramolecular glycosylation see: Jung K.-H.
Müller M.
Schmidt RR.
Chem. Rev.
2000,
100:
4423
11a
Barresi F.
Hindsgaul O.
J. Am. Chem. Soc.
1991,
113:
9377
11b
Barresi F.
Hindsgaul O.
Synlett
1992,
759
11c
Barresi F.
Hindsgaul O.
Can. J. Chem.
1994,
72:
1447
12a
Stork G.
Kim G.
J. Am. Chem. Soc.
1992,
114:
1087
12b
Stork G.
La Clair JJ.
J. Am. Chem. Soc.
1996,
118:
247
13
Tebbe FN.
Parshall GW.
Reddy GS.
J. Am. Chem. Soc.
1978,
100:
3611
14
Ito Y.
Ogawa T.
Angew. Chem. Int. Ed. Engl.
1994,
33:
1765
15
Ito Y.
Ohnishi Y.
Ogawa T.
Nakahara Y.
Synlett
1998,
1102
16a
Dan A.
Ito Y.
Ogawa T.
J. Org. Chem.
1995,
60:
4680
16b
Dan A.
Ito Y.
Ogawa T.
Tetrahedron Lett.
1995,
36:
7487
17a
Lergenmüller M.
Nukada T.
Kuramochi K.
Dan A.
Ogawa T.
Ito Y.
Eur. J. Org. Chem.
1999,
1367
17b
Ito Y.
Ando H.
Wada M.
Kawai T.
Ohnishi Y.
Nakahara Y.
Tetrahedron
2001,
57:
4123
18
Ito Y.
Ogawa T.
J. Am. Chem. Soc.
1997,
119:
5562
19a
Bols M.
J. Chem. Soc., Chem. Commun.
1992,
913
19b
Bols M.
J. Chem. Soc., Chem. Commun.
1993,
791
19c
Bols M.
Hansen HC.
Chem. Lett.
1994,
1049
20
Packard GK.
Rychnovsky SD.
Org. Lett.
2001,
3:
3393
21a
Krog-Jensen C.
Oscarson S.
J. Org. Chem.
1996,
61:
4512
21b
Krog-Jensen C.
Oscarson S.
J. Org. Chem.
1998,
63:
1780
22
Gelin M.
Ferrieres V.
Lefeuvre M.
Plusquellec D.
Eur. J. Org. Chem.
2003,
1285
23
Ennis SC.
Fairbanks AJ.
Tennant-Eyles RJ.
Yeates HS.
Synlett
1999,
1387
24 The anomeric configurations of all mannosides synthesised throughout these studies were confirmed by measurement of the J
H-1,C-1 coupling constants which were in all cases less than 160 Hz, see: Bock K.
Pedersen C.
J. Chem. Soc., Perkin Trans. 2
1974,
293
25
Ennis SC.
Fairbanks AJ.
Slinn CA.
Tennant-Eyles RJ.
Yeates HS.
Tetrahedron
2001,
57:
4221
26
Boons G.-J.
Isles S.
J. Org. Chem.
1996,
61:
4262
27
Seward CMP.
Cumpstey I.
Aloui M.
Ennis SC.
Redgrave AJ.
Fairbanks AJ.
Chem. Commun.
2000,
1409
28
Cumpstey I.
Fairbanks AJ.
Redgrave AJ.
Org. Lett.
2001,
3:
2371
29
Mukaiyama T.
Murai Y.
Shoda S.
Chem. Lett.
1981,
431
30
Cumpstey I.
Fairbanks AJ.
Redgrave AJ.
Monatsh. Chem.
2002,
133:
449
31
Cumpstey I.
D. Phil. Thesis
University of Oxford;
UK:
2002.
32a
Montchamp J.-L.
Tian F.
Hart ME.
Frost JW.
J. Org. Chem.
1996,
61:
3897
32b
Douglas NL.
Ley SV.
Osborn HMI.
Owen DR.
Priepke HWM.
Warriner SL.
Synlett
1996,
793
33
Aloui M.
Chambers D.
Cumpstey I.
Fairbanks AJ.
Redgrave AJ.
Seward CMP.
Chem.-Eur. J.
2002,
8:
2608
34
Seward CMP.
D. Phil. Thesis
University of Oxford;
UK:
2002.
35 See for example: Scheffler G.
Behrendt ME.
Schmidt RR.
Eur. J. Org. Chem.
2000,
3527
36
Ennis SC.
Cumpstey I.
Fairbanks AJ.
Butters TD.
Mackeen M.
Wormald MR.
Tetrahedron
2002,
58:
9403
37 Cumpstey, I.; Fairbanks, A. J. unpublished results.
38 In fact both of these glycosylation reactions have only been performed on a single occasion on a small scale and so the reaction yields remain somewhat unoptimised.
39
Plante OJ.
Palmacci ER.
Seeberger PH.
Science
2001,
291:
1523