Subscribe to RSS
DOI: 10.1055/s-2003-41482
Phosphonodithioformates: Efficient Three-Component Coupling of Dialkyl phosphites, Carbon Disulfide, and Alkyl Halides in the Presence of Cesium Carbonate and Tetrabutylammonium Iodide
Publication History
Publication Date:
08 October 2003 (online)

Abstract
A mild one-pot, three-component coupling reaction uniting a dialkyl phosphite, carbon disulfide (CS2) and an alkyl halide for the mild and efficient synthesis of phosphonodithioformates using cesium carbonate (Cs2CO3) and tetrabutylammonium iodide (TBAI) was developed. Various dialkyl phosphites were examined using a diverse array of alkyl halides, and these improved reaction conditions were found to be highly selective producing the title compounds exclusively in moderate to high yields.
Key words
alkylations - alkyl halides - cesium carbonate - phosphonodithioformate - phosphorus
- For recent leading references, see:
-
1a
Halazy S.Ehrhard A.Eggenspiller A.Berges-Gross V.Danzin C. Tetrahedron 1996, 52: 8619 -
1b
Kawamoto AM.Campbell MM. J. Chem. Soc. Perkin Trans. 1 1997, 1249 -
1c
Caplan NA.Pogson CI.Hayes DJ.Blackburn GM. J. Chem. Soc. Perkin Trans. 1 2000, 421 -
1d
Yokomatsu T.Hayakawa Y.Kihara T.Koyanagi S.Soeda S.Shimeno H.Shibuya S. Bioorg. Med. Chem. 2000, 8: 2571 -
2a
Levillain J.Masson S.Hudson A.Alberti A. J. Am. Chem. Soc. 1993, 115: 8444 -
2b
Alberti A.Benaglia M.Della Bona A.Macciantelli D.Luccioni-Heuze B.Masson S.Hudson A. J. Chem. Soc., Perkin Trans. 2 1996, 1057 -
2c
Alberti A.Benaglia M.Bonora M.Borzatta V.Hudson A.Macciantelli D.Masson S. Polym. Degrad. Stab. 1998, 62: 559 -
2d
Albert A.Benaglia B.Hapiot P.Hudson A.Le Coustumer G.Macciantelli D.Masson S. J. Chem. Soc., Perkin Trans. 2 2000, 1908 -
3a
Bulpin A.Masson S.Sene A. Tetrahedron Lett. 1989, 30: 3415 -
3b
Bulpin A.Masson S.Sene A. Tetrahederon Lett. 1990, 31: 1151 -
3c
Bulpin A.Masson S.Sene A. J. Org. Chem. 1992, 57: 4507 -
3d
Masson S. Phosphorus, Sulfur Silicon Relat. Elem. 1994, 95: 127 - 4
Laus M.Papa R.Sparnacci K.Alberti A.Benaglia M.Macciantelli D. Macromolecules 2001, 34: 7269 -
5a
Heuze B.Gasparova R.Heras M.Masson S. Tetrahedron Lett. 2000, 41: 7327 -
5b
Masson S.Saquet M.Marchand P. Tetrahedron 1998, 54: 1523 -
5c
Makomo H.Saquet M.Simeon F.Masson S.Aboutjaudet E.Collignon N.Gulea-Purcarescu M. Phosphorus, Sulfur Silicon Relat. Elem. 1996, 110: 445 -
5d
Mikolajczyk M.Mikina M.Graczyk PP.Balczewski P. Synthesis 1996, 1232 -
5e
Bulpin A.LeRoy-Gourvennec S.Masson S. Phosphorus, Sulfur Silicon Relat. Elem. 1994, 89: 119 -
5f
Makomo H.Masson S.Saquet M. Tetrahedron 1994, 50: 10277 - 6
Grisley DW. J. Org. Chem. 1961, 2544 - 7
Bulpin A.Masson S.Sene A. Tetrahedron Lett. 1989, 30: 3415 - 8
Zimin MG.Dvoinishnikova TA.Konovalova IV.Pudovik AN. Zh. Obshch. Khim. 1978, 48: 2790 -
9a
Blackburn GM.England DA.Kolkmann F. J. Chem. Soc., Chem. Commun. 1981, 930 -
9b
Blackburn GM.Eckstein F.Kent DE.Perree TD. Nucleosides Nucleotides 1985, 4: 165 - 10 For a general overview for the synthesis of phosphono- and phosphinopeptides, see:
Kafarski P.Lejczak B. In Aminophosphonic and Aminophosphinic Acids, Chemistry and Biological ActivityKukhar VP.Hudson HR. Wiley; England: 2000. p.173-203 ; and references cited therein - 11 Cs2CO3 offered a higher yield than previously reported, see:
Alberti A.Benaglia M.Laus M.Sparnacci K. J. Org. Chem. 2002, 67: 7911 - 12 Inverse addition (cesium salt of dialkylphosphite to CS2) was also tried and did not result in a higher yield. Also, formation of secondary products resulting from the reaction between dialkylphosphite salts with the in situ generated cesium phosphonodithiocarboxylate leading to the expected desulfurization forming methylene diphosphonates did not arise as previously described for sodium salts. See:
Masson S. Reviews in Heteroatom Chemistry Vol. 12:Oae S. VCH; Weinheim: 1995. p.69-84 - For reviews on the ‘cesium effect’, see:
-
14a
Ostrowicki A.Vogtle F. In Topics in Current Chemistry Vol. 161:Weber E.Vogtle F. Springer Verlag; Heidelberg: 1992. p.37 -
14b
Galli C. Org. Prep. Proced. Int. 1992, 24: 287 ; and references therein -
14c
Blum Z. Acta Chem. Scand. 1989, 43: 248 - 15 Formation of ‘naked anions’ by solvation of cesium ions has been previously postulated and studied extensively:
Dijstra G.Kruizinga WH.Kellogg RM. J. Org. Chem. 1987, 52: 4230 - For examples of efficient cesium-promoted alkylations, see:
-
16a
Parrish JP.Dueno EE.Kim S.-I.Jung KW. Synth. Commun. 2000, 30: 2687 -
16b
Salvatore RN.Flanders VL.Ha D.Jung KW. Org. Lett. 2000, 2: 2797 -
16c
Dueno EE.Chu F.Kim S.-I.Jung KW. Tetrahedron Lett. 1999, 40: 1843 -
16d
Salvatore RN.Nagle AS.Schmidt SE.Jung KW. Org. Lett. 1999, 1: 1893 -
16e
Salvatore RN.Shin SI.Nagle AS.Jung KW. J. Org. Chem. 2001, 66: 1035 -
16f
Salvatore RN.Sahab S.Jung KW. Tetrahedron Lett. 2001, 42: 2055 -
16g
Salvatore RN.Schmidt SE.Shin SI.Nagle AS.Worrell JH.Jung KW. Tetrahedron Lett. 2000, 41: 9705 -
16h
Salvatore RN.Ledger JA.Jung KW. Tetrahedron Lett. 2001, 42: 6023 -
16i
Kim S.-I.Chu F.Dueno EE.Jung KW. J. Org. Chem. 1999, 64: 4578 -
16j
Salvatore RN.Chu F.Nagle AS.Kapxhiu EA.Cross RM.Jung KW. Tetrahedron 2002, 58: 3329 -
16k
Salvatore RN.Shin SI.Flanders VL.Jung KW. Tetrahedron Lett. 2001, 42: 1799 -
16l
Salvatore RN.Nagle AS.Jung KW. J. Org. Chem. 2002, 67: 674 - TBAI is strongly believed to act as a phase-transfer catalyst in the reaction, therefore, facilitating alkylations producing high product yields. For other phase-transfer catalyzed phosphorus alkylations, see:
-
17a
Kem KM.Nguyen NV.Cross DJ. J. Org. Chem. 1981, 46: 5188 -
17b
Weber WP.Gokel GW. Phase Transfer Catalysts in Organic Synthesis Springer Verlag; New York: 1977. -
17c
Starks CM.Liotta C. Phase Transfer Catalysis: Principles and Techniques Academic Press; New York: 1978. -
17d However, we cannot rule out an internal Finkelstein-type reaction for the in-situ generation of alkyl iodides from bromides and chlorides, hence improving yields. Although, the use of alkyl iodides directly, without TBAI gave lower product yields. Therefore, we propose TBAI minimizes or prohibits direct alkylation of the phosphite with an alkyl halide presumably enhancing the rate of CS2 incorporation/and or stabilizing the phosphoryl dithioformate anion through conjugation with the tetrabutylammonium cation. Whereas, the cesium ion tends to weakly coordinate to the conjugate anions, making them more nucleophilic. Prior to addition of the halide, the phosphite and CS2 were reacted to pre-form the incipient dithioformate anion, which is belived to suppress direct alkylation of the phosphite. For a similar example, see ref. for a mechanistic interpretation and for the use of TBABr and other onium salts in the formation of urethanes:
Yoshida M.Hara N.Okuyama S. Chem. Commun. 2000, 151 - 19
Nagle AS.Salvatore RN.Chong BD.Jung KW. Tetrahedron Lett. 2000, 41: 3011 - For new biologically active phosphonates, see:
-
21a
Hildebrand R. The Role of Phosphonates in Living Systems CRC Press; Boca Raton: 1983. -
21b
Engel R. Chem. Rev. 1977, 77: 349 -
21c
Kafarski P.Leczak B. Phosphorus, Sulfur Silicon Relat. Elem. 1991, 63: 193
References
General Experimental Procedure: To a solution of diethyl phosphite 4 (0.12 g, 0.85 mmol, 1 equiv) in anhyd DMF (5 mL) was added Cs2CO3 (0.83 g, 2.55 mmol, 3 equiv) and TBAI (0.94 g, 2.55 mmol, 3 equiv) with vigorous stirring for 10 min at r.t. under a N2 atmosphere. CS2 (0.15 mL, 2.55 mmol, 3 equiv) was added and the fuchsia colored mixture was stirred for 1 h. After this time period, benzyl bromide (0.30 mL, 2.55 mmol, 3 equiv) was added and stirred for an additional 24 h. The resultant yellow reaction suspension was then poured into water (30 mL) and extracted with EtOAc (3 × 30 mL). The organic layer was washed with water (2 × 30 mL), brine (30 mL), and dried over anhyd Na2SO4. Evaporation of the solvent followed by flash chromatography (hexanes-EtOAc, 9:1) afforded benzyl diethoxyphosphoryldithioformate(5) as a dark red oil (0.25 g, 97%).
1H NMR (270 MHz, CDCl3): δ = 1.36 (t, J
1,2 = 7.6 Hz, 6 H), 4.26 (m, 4 H), 4.46 (s, 2 H), 7.30 (s, 5 H). 13C NMR (100 MHz, CDCl3): δ = 16.20 (d, J
CP = 6.34 Hz), 40.63 (d, J
CP = 2.72 Hz), 64.70 (d, J
CP = 6.94 Hz), 128.00 (s), 128.77 (s), 129.26 (s), 133.53 (s), 228.16 [d, J
CP = 174.54 PC(S)S]; 31P NMR (85 MHz, CDCl3)δ from 30% H3PO4-H2O: -4.57. MS: m/z = 91, 121, 182, 248, 276, 304 (M+). Anal. Calcd for C12H17O3PS2: C, 47.35; H, 5.63. Found: C, 47.42; H, 5.64.
Since dithioesters are known to be very good thioacylating agents for amines due to the high electrophilicity of the C=S which is activated by the phosphono-substituent (an electron-withdrawing group), amino bromides 13 and 15 were used as the corresponding hydrobromide salts, since a spontaneous intermolecular reaction to give thioamides or cyclization to the phosphonothiazoline can readily occur. Neither the aforementioned thioacylation reaction (which usually occurs with the alkyl group in the phosphono-moiety) or cyclization was seen. Therefore, we wish to strongly emphasize product structures for aminodithioesters from 13 and 15 were isolated and assigned without ambiguity from the exact mass (MS), 1H, 13C, and 31P NMR spectroscopy.
201H NMR, 13C NMR, 31P NMR and 2D NMR analysis indicate the product as a single diastereomer.