Subscribe to RSS
DOI: 10.1055/s-2003-36236
A Concise Synthesis of (-)-Codonopsinine and an Approach to Synthesis of (+)-Hyacinthacines A1 and A2 from a Polyhydroxylated Cyclic Nitrone
Publication History
Publication Date:
18 December 2002 (online)

Abstract
Synthesis of (-)-codonopsinine (2) was accomplished in seven steps that involved an addition of five-membered cyclic nitrone 1, readily obtained from l-xylose, with the Grignard reagent. Nitrone 1 also underwent intermolecular cycloaddition with several α,β-unsaturated esters 12 to afford cycloadducts 13, one of which, 13c, was elaborated to the key intermediate 17 for (+)-hyacinthacines A1 (3a) and A2 (3b).
Key words
cyclic nitrone - nucleophilic addition - cycloaddition - total synthesis - natural products
- 1a 
             
            Watson AA.Fleet GWJ.Asano N.Molyneux RJ.Nash RJ. Phytochemistry 2001, 56: 265
- 1b 
             
            Asano N.Nash RJ.Molyneux RJ.Fleet GWJ. Tetrahedron: Asymmetry 2000, 11: 1645
- 2a 
             
            Shibano M.Tsukamoto D.Kusano G. Heterocycles 2002, 57: 1539
- 2b 
             
            Nash RJ.Fellows LE.Dring JV.Fleet GWJ.Girdhar A.Ramsden NG.Peach JM.Hegarty MP.Scofield AM. Phytochemistry 1990, 29: 111
- 2c 
             
            Harris CM.Harris TM.Molyneux RJ.Tropea JE.Elbein AD. Tetrahedron Lett. 1989, 30: 5685
- 2d 
             
            Nash RJ.Fellows LE.Plant AC.Fleet GWJ.Derome AE.Baird PD.Hegarty MP.Scofield AM. Tetrahedron 1988, 44: 5959
- For recent reviews of syntheses of pyrrolidine and pyrrolizidine alkaloids, see:
- 3a 
             
            Liddell JR. Nat. Prod. Rep. 1999, 16: 499
- 3b 
             
            Michael JP. Nat. Prod. Rep. 1997, 14: 619
- 3c 
             
            Robins DJ. Nat. Prod. Rep. 1995, 12: 413
- 3d For leading references, 
            see:  
            Hulme AN.Rosser EM. Org. Lett. 2002, 4: 265
- 3e See also:  
            Cordero FM.Pisaneschi F.Gensini M.Goti A.Brandi A. Eur. J. Org. Chem. 2002, 1941
- 3f See also:  
            Severino EA.Correia CRD. Org. Lett. 2000, 2: 3039
- 3g See also:  
            Cordero FM.Gensini M.Goti A.Brandi A. Org. Lett. 2000, 2: 2475
- 3h See also:  
            Yoda H.Asai F.Takabe K. Synlett 2000, 1001
- 3i See also:  
            Yoda H.Katoh H.Takabe K. Tetrahedron Lett. 2000, 41: 7661
- 3j See also:  
            Ahn J.-B.Yun C.-S.Kim KH.Ha D.-C. J. Org. Chem. 2000, 65: 9249
- 3k See also:  
            Pearson WH.Hines JV. J. Org. Chem. 2000, 65: 5785
- 3l See also:  
            Denmark SE.Herbert B. J. Org. Chem. 2000, 65: 2887
- 3m See also:  
            Denmark SE.Hurd AR. Org. Lett. 1999, 1: 1311
- 4a 
             
            Behr J.-B.Erard A.Guillerm G. Eur. J. Org. Chem. 2002, 1256
- 4b 
             
            Izquierdo I.Plaza MT.Robles R.Franco F. Tetrahedron: Asymmetry 2001, 12: 2481
- 4c 
             
            Person WH.Guo L. Tetrahedron Lett. 2001, 42: 8267
- 4d 
             
            Pearson WH.Hembre EJ. Tetrahedron Lett. 2001, 42: 8273
- 4e 
             
            Gallos JK.Sarli VC.Koftis TV.Coutouli-Argyropoulou E. Tetrahedron Lett. 2000, 41: 4819
- 5a 
             
            Matkhalikova SF.Malikov VM.Yunusov SYu. Khim. Prir. Soedin. 1969, 5: 607 ; Chem. Abstr. 1970, 73, 25712d
- 5b 
             
            Khanov MT.Sultanov MB.Egorova TA. Farmakol. Alkaloidov Serdech. Glikoyidov. 1971, 210 ; Chem. Abstr. 1972, 77, 135091r
- 5c For recent syntheses of codonopsinine 
            and codonopsine, see:  
            Yoda H.Nakajima T.Takabe K. Tetrahedron Lett. 1996, 37: 5531
- 5d See also:  
            Wang C.-LJ.Calabrese JC. J. Org. Chem. 1991, 56: 4341
- 5e  See further:  
            Iida H.Yamazaki N.Kibayashi C. J. Org. Chem. 1987, 52: 1956 ; see also ref. 3f
- 6a 
             
            Asano N.Kuroi H.Ikeda K.Kizu H.Kameda Y.Kato A.Adachi I.Watson AA.Nash RJ.Fleet GWJ. Tetrahedron: Asymmetry 2000, 11: 1
- 6b For the first synthesis 
            of (-)-3b, see:  
            Rambaud L.Compain P.Martin OR. Tetrahedron: Asymmetry 2001, 12: 1807
- 7 
             
            Tamura O.Toyao A.Ishibashi H. Synlett 2002, 1344
- 8a 
             
            Lim MH.Kim HO.Moon HR.Chun MW.Jeong LS. Org. Lett. 2002, 4: 529
- 8b 
             
            Jeong LS.Moon HR.Choi YJ.Chun MW.Kim HO. J. Org. Chem. 1998, 63: 4821
- 10a The 
            exclusive formation of compound 8 can be 
            explained by nucleophilic addition of the Grignard reagent from 
            the less-hindered side and/or formation of a rigid chelated complex 
            between 1 and MgX2, see:  
            Portolés R.Murga J.Falomir E.Carda M.Uriel S.Marco JA. Synlett 2002, 711
- 10b For a review of nucleophilic 
            addition to nitrones, see:  
            Lombardo M.Trombini C. Synthesis 2000, 759
- For recent reviews of cycloaddition of nitrones, see:
- 13a 
             
            Broggini G.Zecchi G. Synthesis 1999, 905
- 13b 
             
            Gothelf KV.Jørgensen KA. Chem. Rev. 1998, 98: 863
- 15 
             
            Barton DHR.Dorchak J.Jaszberenyi JC. Tetrahedron 1992, 48: 7435
References
Analytical Data of Compound 1: [α]D 28 -13.0 (c 0.50, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 3.33 (3 H, s), 3.74 (1 H, dd, J = 2.9, 10.3 Hz), 3.99 (1 H, m), 4.35 (1 H, dd, J = 4.9, 10.3 Hz), 4.36 (1 H, br dd, J = 2.5, 3.9 Hz), 4.51 (1 H, d, J = 12.2 Hz), 4.58 (1 H, d, J = 11.7 Hz), 4.61 (1 H, d, J = 12.2 Hz), 4.63 (1 H, d, J = 11.7 Hz), 4.66 (1 H, d, J = 7.3 Hz), 4.68 (1 H, d, J = 7.3 Hz), 4.70 (1 H, br t, J = 2.5 Hz), 6.96 (1 H, br s), 7.25-7.35 (10 H, m). 13C NMR (125 MHz, CDCl3): δ = 55.7, 65.9, 72.0, 73.5, 77.3, 80.8, 81.8, 96.4, 127.6, 127.7, 127.8, 128.1, 128.3, 128.5, 133.4, 137.2, 137.7.
11Analytical Data of Compound 8: 1H NMR (500 MHz, CDCl3): δ = 3.11 (3 H, s), 3.64 (1 H, m), 3.72 (1 H, dd, J = 7.3, 9.3 Hz), 3.77 (3 H, s), 3.83 (1 H, dd, J = 4.2, 9.3 Hz), 4.05 (1 H, dd, J = 2.9, 3.4 Hz), 4.12 (1 H, d, J = 7.3 Hz), 4.25 (1 H, dd, J = 3.4, 7.3 Hz), 4.42 (1 H, d, J = 6.4 Hz), 4.51-4.63 (5 H, m), 5.28 (1 H, br s), 6.86 (2 H, d, J = 8.3 Hz), 7.25-7.50 (12 H, m). 13C NMR (125 MHz, CDCl3): δ = 55.2, 55.3, 67.0, 68.8, 71.7, 73.4, 73.5, 83.9, 84.6, 95.6, 113.8, 127.6, 127.7, 127.9, 128.3, 128.4, 129.7, 130.8, 138.2, 138.3, 159.3.
12Analytical Data of Compound (-)-2: Mp 173-174 °C (MeOH), [α]D 28 -13.2 (c 0.3, MeOH) [lit. [5a] mp 169-170 °C, [α]D 20 -8.8 (c 0.1, MeOH), lit. [5c] [α]D 20 -11.8 (c 0.69, MeOH)]. 1H NMR (500 MHz, pyridine-d 5 ): δ = 1.32 (3 H, d, J = 6.8 Hz), 2.21 (3 H, s), 3.66 (3 H, s), 3.68 (1 H, qd, J = 3.9, 6.8 Hz), 4.02 (1 H, br d, J = 6.4 Hz), 4.37 (1 H, br t, J = 3.9 Hz), 4.61 (1 H, br dd, J = 3.9, 6.4 Hz), 6.96 (2 H, J = 8.3 Hz), 7.60 (2 H, d, J = 8.3 Hz). Two protons of hydroxyl groups were not observed in this spectrum. The 1H NMR spectral data of our synthetic (-)-2 are identical with those previously reported. [3f] [5e]
14Analytical Data of Compound 13c: 1H NMR (500 MHz, CDCl3): δ = 1.47 (9 H, s), 2.55 (2 H, br t, J = 7.3 Hz), 3.33 (1 H, m), 3.34 (3 H, s), 3.61 (1 H, dd, J = 6.4, 10.3 Hz), 3.71 (1 H, dd, J = 4.4, 10.3 Hz), 3.74 (1 H, dt, J = 3.9, 7.3 Hz), 4.01 (1 H, dd, J = 3.9, 5.9 Hz), 4.07 (1 H, br t, J = 3.9 Hz), 4.53 (1 H, t, J = 7.3 Hz), 4.55 (1 H, d, J = 12.2 Hz), 4.58 (2 H, br s), 4.60 (1 H, d, J = 12.2 Hz), 4.61 (1 H, d, J = 6.8 Hz), 4.63 (1 H, d, J = 6.8 Hz), 7.25-7.31 (10 H, m). 13C NMR (125 MHz, CDCl3): δ = 28.0, 37.8, 55.6, 68.3, 69.8, 70.1, 72.3, 73.4, 75.5, 82.0, 84.3, 85.1, 96.0, 127.5, 127.7, 127.8, 128.2, 128.3, 138.0, 138.3, 169.5.
16The stereochemistry of compound 15 was established by its NOE difference spectrum shown below.
17Amide 16 was also obtained from 13c′ via three similar steps.
18Analytical Data of Compound (-)-17: [α]D 31 -64.1 (c 0.16, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 1.81-1.89 (1 H, m), 2.33-2.39 (2 H, m), 2.62 (1 H, br ddd, J = 8.8, 10.7, 16.6 Hz), 3.20 (1 H, br s), 3.64 (1 H, br dd, J = 2.9, 9.8 Hz), 3.70 (1 H, br dd, J = 3.9, 9.8 Hz), 3.81-3.84 (2 H, m), 4.05 (1 H, br t, J = 2.9 Hz), 4.17 (1 H, br q, J = 2.9 Hz), 4.49 (1 H, br d, J = 11.7 Hz), 4.51 (1 H, br d, J = 11.2 Hz), 4.57 (1 H, br d, J = 11.2 Hz), 4.59 (1 H, br d, J = 11.7 Hz), 7.26-7.36 (10 H, m). 13C NMR (125 MHz, CDCl3): δ = 26.3, 33.2, 59.4, 67.5, 71.0, 71.9, 73.8, 81.4, 89.2, 127.7, 127.8, 127.9, 128.1, 128.5, 128.6, 137.6, 138.1, 176.6.
 
    