References
<A NAME="RU08502ST-1A">1a</A>
Watson AA.
Fleet GWJ.
Asano N.
Molyneux RJ.
Nash RJ.
Phytochemistry
2001,
56:
265
<A NAME="RU08502ST-1B">1b</A>
Asano N.
Nash RJ.
Molyneux RJ.
Fleet GWJ.
Tetrahedron: Asymmetry
2000,
11:
1645
<A NAME="RU08502ST-2A">2a</A>
Shibano M.
Tsukamoto D.
Kusano G.
Heterocycles
2002,
57:
1539
<A NAME="RU08502ST-2B">2b</A>
Nash RJ.
Fellows LE.
Dring JV.
Fleet GWJ.
Girdhar A.
Ramsden NG.
Peach JM.
Hegarty MP.
Scofield AM.
Phytochemistry
1990,
29:
111
<A NAME="RU08502ST-2C">2c</A>
Harris CM.
Harris TM.
Molyneux RJ.
Tropea JE.
Elbein AD.
Tetrahedron Lett.
1989,
30:
5685
<A NAME="RU08502ST-2D">2d</A>
Nash RJ.
Fellows LE.
Plant AC.
Fleet GWJ.
Derome AE.
Baird PD.
Hegarty MP.
Scofield AM.
Tetrahedron
1988,
44:
5959
For recent reviews of syntheses
of pyrrolidine and pyrrolizidine alkaloids, see:
<A NAME="RU08502ST-3A">3a</A>
Liddell JR.
Nat. Prod. Rep.
1999,
16:
499
<A NAME="RU08502ST-3B">3b</A>
Michael JP.
Nat. Prod. Rep.
1997,
14:
619
<A NAME="RU08502ST-3C">3c</A>
Robins DJ.
Nat. Prod. Rep.
1995,
12:
413
<A NAME="RU08502ST-3D">3d</A> For leading references,
see:
Hulme AN.
Rosser EM.
Org. Lett.
2002,
4:
265
<A NAME="RU08502ST-3E">3e</A> See also:
Cordero FM.
Pisaneschi F.
Gensini M.
Goti A.
Brandi A.
Eur.
J. Org. Chem.
2002,
1941
<A NAME="RU08502ST-3F">3f</A> See also:
Severino EA.
Correia CRD.
Org.
Lett.
2000,
2:
3039
<A NAME="RU08502ST-3G">3g</A> See also:
Cordero FM.
Gensini M.
Goti A.
Brandi A.
Org. Lett.
2000,
2:
2475
<A NAME="RU08502ST-3H">3h</A> See also:
Yoda H.
Asai F.
Takabe K.
Synlett
2000,
1001
<A NAME="RU08502ST-3I">3i</A> See also:
Yoda H.
Katoh H.
Takabe K.
Tetrahedron
Lett.
2000,
41:
7661
<A NAME="RU08502ST-3J">3j</A> See also:
Ahn J.-B.
Yun C.-S.
Kim KH.
Ha D.-C.
J. Org. Chem.
2000,
65:
9249
<A NAME="RU08502ST-3K">3k</A> See also:
Pearson WH.
Hines JV.
J.
Org. Chem.
2000,
65:
5785
<A NAME="RU08502ST-3L">3l</A> See also:
Denmark SE.
Herbert B.
J.
Org. Chem.
2000,
65:
2887
<A NAME="RU08502ST-3M">3m</A> See also:
Denmark SE.
Hurd AR.
Org.
Lett.
1999,
1:
1311
<A NAME="RU08502ST-4A">4a</A>
Behr J.-B.
Erard A.
Guillerm G.
Eur. J. Org. Chem.
2002,
1256
<A NAME="RU08502ST-4B">4b</A>
Izquierdo I.
Plaza MT.
Robles R.
Franco F.
Tetrahedron: Asymmetry
2001,
12:
2481
<A NAME="RU08502ST-4C">4c</A>
Person WH.
Guo L.
Tetrahedron
Lett.
2001,
42:
8267
<A NAME="RU08502ST-4D">4d</A>
Pearson WH.
Hembre EJ.
Tetrahedron
Lett.
2001,
42:
8273
<A NAME="RU08502ST-4E">4e</A>
Gallos JK.
Sarli VC.
Koftis TV.
Coutouli-Argyropoulou E.
Tetrahedron
Lett.
2000,
41:
4819
<A NAME="RU08502ST-5A">5a</A>
Matkhalikova SF.
Malikov VM.
Yunusov SYu.
Khim.
Prir. Soedin.
1969,
5:
607 ; Chem. Abstr. 1970, 73, 25712d
<A NAME="RU08502ST-5B">5b</A>
Khanov MT.
Sultanov MB.
Egorova TA.
Farmakol. Alkaloidov Serdech. Glikoyidov.
1971,
210 ; Chem. Abstr. 1972, 77, 135091r
<A NAME="RU08502ST-5C">5c</A> For recent syntheses of codonopsinine
and codonopsine, see:
Yoda H.
Nakajima T.
Takabe K.
Tetrahedron
Lett.
1996,
37:
5531
<A NAME="RU08502ST-5D">5d</A> See also:
Wang C.-LJ.
Calabrese JC.
J.
Org. Chem.
1991,
56:
4341
<A NAME="RU08502ST-5E">5e</A> See further:
Iida H.
Yamazaki N.
Kibayashi C.
J. Org. Chem.
1987,
52:
1956 ; see also ref. 3f
<A NAME="RU08502ST-6A">6a</A>
Asano N.
Kuroi H.
Ikeda K.
Kizu H.
Kameda Y.
Kato A.
Adachi I.
Watson AA.
Nash RJ.
Fleet GWJ.
Tetrahedron:
Asymmetry
2000,
11:
1
<A NAME="RU08502ST-6B">6b</A> For the first synthesis
of (-)-3b, see:
Rambaud L.
Compain P.
Martin OR.
Tetrahedron: Asymmetry
2001,
12:
1807
<A NAME="RU08502ST-7">7</A>
Tamura O.
Toyao A.
Ishibashi H.
Synlett
2002,
1344
<A NAME="RU08502ST-8A">8a</A>
Lim MH.
Kim HO.
Moon HR.
Chun MW.
Jeong LS.
Org. Lett.
2002,
4:
529
<A NAME="RU08502ST-8B">8b</A>
Jeong LS.
Moon HR.
Choi YJ.
Chun MW.
Kim HO.
J. Org. Chem.
1998,
63:
4821
<A NAME="RU08502ST-9">9</A>
Analytical Data
of Compound 1: [α]D
28 -13.0
(c 0.50, CHCl3). 1H
NMR (500 MHz, CDCl3): δ = 3.33 (3 H,
s), 3.74 (1 H, dd, J = 2.9,
10.3 Hz), 3.99 (1 H, m), 4.35 (1 H, dd, J = 4.9,
10.3 Hz), 4.36 (1 H, br dd, J = 2.5,
3.9 Hz), 4.51 (1 H, d, J = 12.2
Hz), 4.58 (1 H, d, J = 11.7
Hz), 4.61 (1 H, d, J = 12.2
Hz), 4.63 (1 H, d, J = 11.7
Hz), 4.66 (1 H, d, J = 7.3 Hz),
4.68 (1 H, d, J = 7.3
Hz), 4.70 (1 H, br t, J = 2.5
Hz), 6.96 (1 H, br s), 7.25-7.35 (10 H, m). 13C
NMR (125 MHz, CDCl3): δ = 55.7, 65.9,
72.0, 73.5, 77.3, 80.8, 81.8, 96.4, 127.6, 127.7, 127.8, 128.1,
128.3, 128.5, 133.4, 137.2, 137.7.
<A NAME="RU08502ST-10A">10a</A> The
exclusive formation of compound 8 can be
explained by nucleophilic addition of the Grignard reagent from
the less-hindered side and/or formation of a rigid chelated complex
between 1 and MgX2, see:
Portolés R.
Murga J.
Falomir E.
Carda M.
Uriel S.
Marco JA.
Synlett
2002,
711
<A NAME="RU08502ST-10B">10b</A> For a review of nucleophilic
addition to nitrones, see:
Lombardo M.
Trombini C.
Synthesis
2000,
759
<A NAME="RU08502ST-11">11</A>
Analytical Data
of Compound 8: 1H NMR (500 MHz, CDCl3): δ = 3.11
(3 H, s), 3.64 (1 H, m), 3.72 (1 H, dd, J = 7.3,
9.3 Hz), 3.77 (3 H, s), 3.83 (1 H, dd, J = 4.2,
9.3 Hz), 4.05 (1 H, dd, J = 2.9,
3.4 Hz), 4.12 (1 H, d, J = 7.3
Hz), 4.25 (1 H, dd, J = 3.4,
7.3 Hz), 4.42 (1 H, d, J = 6.4
Hz), 4.51-4.63 (5 H, m), 5.28 (1 H, br s), 6.86 (2 H, d, J = 8.3 Hz), 7.25-7.50
(12 H, m). 13C NMR (125 MHz, CDCl3): δ = 55.2, 55.3,
67.0, 68.8, 71.7, 73.4, 73.5, 83.9, 84.6, 95.6, 113.8, 127.6, 127.7,
127.9, 128.3, 128.4, 129.7, 130.8, 138.2, 138.3, 159.3.
<A NAME="RU08502ST-12">12</A>
Analytical Data
of Compound (-)-2: Mp 173-174 °C (MeOH), [α]D
28 -13.2
(c 0.3, MeOH) [lit.
[5a]
mp 169-170 °C, [α]D
20 -8.8
(c 0.1, MeOH), lit.
[5c]
[α]D
20 -11.8
(c 0.69, MeOH)]. 1H
NMR (500 MHz, pyridine-d
5
): δ = 1.32
(3 H, d, J = 6.8
Hz), 2.21 (3 H, s), 3.66 (3 H, s), 3.68 (1 H, qd, J = 3.9,
6.8 Hz), 4.02 (1 H, br d, J = 6.4
Hz), 4.37 (1 H, br t, J = 3.9
Hz), 4.61 (1 H, br dd, J = 3.9,
6.4 Hz), 6.96 (2 H, J = 8.3
Hz), 7.60 (2 H, d, J = 8.3
Hz). Two protons of hydroxyl groups were not observed in this spectrum.
The 1H NMR spectral data of our synthetic (-)-2 are identical with those previously reported.
[3f]
[5e]
For recent reviews of cycloaddition
of nitrones, see:
<A NAME="RU08502ST-13A">13a</A>
Broggini G.
Zecchi G.
Synthesis
1999,
905
<A NAME="RU08502ST-13B">13b</A>
Gothelf KV.
Jørgensen KA.
Chem.
Rev.
1998,
98:
863
<A NAME="RU08502ST-14">14</A>
Analytical Data
of Compound 13c: 1H NMR (500 MHz, CDCl3): δ = 1.47
(9 H, s), 2.55 (2 H, br t, J = 7.3
Hz), 3.33 (1 H, m), 3.34 (3 H, s), 3.61 (1 H, dd, J = 6.4,
10.3 Hz), 3.71 (1 H, dd, J = 4.4,
10.3 Hz), 3.74 (1 H, dt, J = 3.9,
7.3 Hz), 4.01 (1 H, dd, J = 3.9,
5.9 Hz), 4.07 (1 H, br t, J = 3.9
Hz), 4.53 (1 H, t, J = 7.3
Hz), 4.55 (1 H, d, J = 12.2
Hz), 4.58 (2 H, br s), 4.60 (1 H, d, J = 12.2
Hz), 4.61 (1 H, d, J = 6.8
Hz), 4.63 (1 H, d, J = 6.8
Hz), 7.25-7.31 (10 H, m). 13C
NMR (125 MHz, CDCl3): δ = 28.0, 37.8,
55.6, 68.3, 69.8, 70.1, 72.3, 73.4, 75.5, 82.0, 84.3, 85.1, 96.0,
127.5, 127.7, 127.8, 128.2, 128.3, 138.0, 138.3, 169.5.
<A NAME="RU08502ST-15">15</A>
Barton DHR.
Dorchak J.
Jaszberenyi JC.
Tetrahedron
1992,
48:
7435
<A NAME="RU08502ST-16">16</A>
The stereochemistry of compound 15 was established by its NOE difference
spectrum shown below.
<A NAME="RU08502ST-17">17</A>
Amide 16 was
also obtained from 13c′ via three
similar steps.
<A NAME="RU08502ST-18">18</A>
Analytical Data
of Compound (-)-17: [α]D
31 -64.1
(c 0.16, CHCl3). 1H
NMR (500 MHz, CDCl3): δ = 1.81-1.89
(1 H, m), 2.33-2.39 (2 H, m), 2.62 (1 H, br ddd, J = 8.8, 10.7,
16.6 Hz), 3.20 (1 H, br s), 3.64 (1 H, br dd, J = 2.9,
9.8 Hz), 3.70 (1 H, br dd, J = 3.9,
9.8 Hz), 3.81-3.84 (2 H, m), 4.05 (1 H, br t, J = 2.9 Hz),
4.17 (1 H, br q, J = 2.9
Hz), 4.49 (1 H, br d, J = 11.7
Hz), 4.51 (1 H, br d, J = 11.2
Hz), 4.57 (1 H, br d, J = 11.2
Hz), 4.59 (1 H, br d, J = 11.7
Hz), 7.26-7.36 (10 H, m). 13C
NMR (125 MHz, CDCl3): δ = 26.3, 33.2,
59.4, 67.5, 71.0, 71.9, 73.8, 81.4, 89.2, 127.7, 127.8, 127.9, 128.1, 128.5,
128.6, 137.6, 138.1, 176.6.