Abstract
Alkoxyallene derivatives 1a -f bearing carbohydrate auxiliaries at the
oxygen were examined in asymmetric hetero Diels-Alder
reactions with nitroso alkenes. Diacetoneglucose derived compound 1a turned out to be the best precursor
furnishing the primary cycloadducts 3a -c with a diastereomeric ratio of approximately
90:10. Isomerization provided the thermodynamically more stable
6H -1,2-oxazines 4a -c . Similarly, diacetonefructose derived
allene 1f gave compounds 4h -j with good efficiency. Gratifyingly, it
turned out that 1a and 1f were
complementary with respect to the preferential absolute configuration
at C-6 of 6H -1,2-oxazines 4a -c and 4h -j , respectively. Cycloadducts derived from 1a have 6S configuration
in excess whereas those derived from 1f are
predominantly 6R configured. Exhaustive
hydrogenolysis of 6H -1,2-oxazines 4a and 4h in the
presence of palladium on charcoal furnished the expected primary
amine 5 in an enantioenriched form. If
this reduction was performed under addition of hydrochloric acid,
pyrrolidine derivative 6 together
with secondary amine 7 as side product were
isolated.
Key words
allenes - carbohydrates - asymmetric synthesis - hetero Diels-Alder reaction - 6H -1,2-oxazines - reduction - pyrrolidines
References
<A NAME="RT04002SS-1">1 </A>
Zimmer R.
Hoffmann M.
Reissig H.-U.
Chem.
Ber.
1992,
125:
2243
<A NAME="RT04002SS-2">2 </A>
Zimmer R.
Homann K.
Reissig H.-U.
Liebigs
Ann. Chem.
1993,
1145
<A NAME="RT04002SS-3A">3a </A>
Zimmer R.
Hiller F.
Reissig H.-U.
Heterocycles
1999,
50:
393
<A NAME="RT04002SS-3B">3b </A>
Buchholz, M.; Reissig,
H.-U. Synthesis 2002 , 1412.
<A NAME="RT04002SS-3C">3c </A>
Buchholz, M.; Hiller,
F.; Reissig, H.-U. Eur. J. Org. Chem. 2002 , in press.
<A NAME="RT04002SS-4">4 </A>
Schmidt E.
Ph.D. Thesis
Technische
Universität Dresden;
Germany:
2001.
<A NAME="RT04002SS-5A">5a </A>
Angermann J.
Homann K.
Reissig H.-U.
Zimmer R.
Synlett
1995,
1014
<A NAME="RT04002SS-5B">5b </A>
Zimmer R.
Homann K.
Angermann J.
Reissig H.-U.
Synthesis
1999,
1223
<A NAME="RT04002SS-6A">6a </A>
Hippeli C.
Reissig H.-U.
Liebigs
Ann. Chem.
1990,
475
<A NAME="RT04002SS-6B">6b </A>
Buchholz M.
Ph.D. Thesis
Freie Universität Berlin;
Germany:
2002.
<A NAME="RT04002SS-6C">6c </A>
Tishkov AA.
Reissig H.-U.
Ioffe SL.
Synlett
2002,
863
<A NAME="RT04002SS-7">7 </A>
Arnold T.
Orschel B.
Reissig H.-U.
Angew.
Chem., Int. Ed. Engl.
1992,
31:
1033 ; Angew. Chem. 1992 , 104 , 1084
Reviews on alkoxyallenes:
<A NAME="RT04002SS-8A">8a </A>
Zimmer R.
Synthesis
1993,
165
<A NAME="RT04002SS-8B">8b </A>
Zimmer R.
Khan FA.
J. Prakt. Chem.
1996,
338:
92
<A NAME="RT04002SS-9">9 </A>
Hausherr A.
Orschel B.
Scherer S.
Reissig H.-U.
Synthesis
2001,
1377
<A NAME="RT04002SS-10">10 </A> Review:
Gilchrist TL.
Chem. Soc. Rev.
1983,
12:
53
<A NAME="RT04002SS-11">11 </A>
Zimmer R.
Reissig H.-U.
Liebigs Ann. Chem.
1991,
553
<A NAME="RT04002SS-12A">12a </A>
Scherer S.
Diploma
Thesis
Technische Hochschule Darmstadt;
Germany:
1992.
<A NAME="RT04002SS-12B">12b </A>
Lindner, H. J.; Richter,
J., unpublished results.
<A NAME="RT04002SS-13A">13a </A>
The
value of the specific optical rotation of 5 is
rather sensitive to the circumstances of its determination (impurities);
the highest [α]D
20 values
for optically pure samples were +16 or -16
<A NAME="RT04002SS-13B">13b </A>
Arnold T.
Ph.D. Thesis
Technische
Hochschule;
Darmstadt, Germany:
1992.
<A NAME="RT04002SS-13C">13c </A>
A value of +12.4
would thus reflect a ratio of enantiomers in the range of 89:11;
actually, this ratio might even be higher
<A NAME="RT04002SS-14">14 </A>
Scherer, S.; Reissig, H.-U., unpublished
results.
<A NAME="RT04002SS-15A">15a </A>
Shatzmiller S.
Shalom E.
Liebigs
Ann. Chem.
1983,
897
<A NAME="RT04002SS-15B">15b </A>
Faragher R.
Gilchrist TL.
J. Chem. Soc.,
Perkin Trans. 1
1979,
258
<A NAME="RT04002SS-16A">16a </A> For
calculations dealing with the cycloadditions of nitrosoethylene
and enol ethers, see:
Liu J.
Niwayama S.
You Y.
Houk KN.
J. Org. Chem.
1998,
63:
1064
<A NAME="RT04002SS-16B">16b </A>
Although the ground
states of enol ethers involve an S -cis conformation the corresponding S -trans conformation
is involved in the transition state of nitrosoethylene cycloadditions;
we expect similar effects for alkoxyallenes such as 1a and 1f
<A NAME="RT04002SS-17">17 </A> For a study of the conformational
behaviour of alkoxyallenes bearing furanose auxiliaries, see:
Lysek R.
Krajewski P.
Urbanczyk-Lipkowska Z.
Furman B.
Kaluza Z.
Kozerski L.
Chmielewski M.
J. Chem. Soc., Perkin Trans. 2
2000,
61
Reviews:
<A NAME="RT04002SS-18A">18a </A>
Reissig H.-U.
Angew.
Chem., Int. Ed. Engl.
1992,
31:
288 ; Angew. Chem. 1992 , 104 , 295
<A NAME="RT04002SS-18B">18b </A>
Kunz H.
Rück K.
Angew. Chem., Int. Ed.
Engl.
1993,
32:
336 ; Angew. Chem. 1993 , 105 , 355
<A NAME="RT04002SS-18C">18c </A>
Kunz H.
Rück-Braun K.
Chiral
Auxiliaries in Cycloadditions
Wiley-VCH;
Weinheim:
1999.
For recent reports dealing with
carbohydrate auxiliaries, see:
<A NAME="RT04002SS-19A">19a </A>
Bach T.
Höfer F.
J. Org. Chem.
2001,
66:
3427 ; and references cited therein
<A NAME="RT04002SS-19B">19b </A>
Yu H.
Ballard EE.
Wang B.
Tetrahedron
Lett.
2001,
42:
1835 ;
and references cited therein
<A NAME="RT04002SS-20">20 </A>
Korten H.
Scholl R.
Ber. Dtsch. Chem. Ges.
1901,
34:
1901
<A NAME="RT04002SS-21">21 </A>
Gilchrist TL.
Roberts TG.
J. Chem. Soc., Perkin
Trans. 1
1983,
1283
<A NAME="RT04002SS-22">22 </A>
Zimmer R.
Reissig H.-U.
J. Org. Chem.
1992,
57:
339
<A NAME="RT04002SS-23">23 </A>
Landor SR.
Sonola OO.
Taxchell AR.
J. Chem. Soc., Perkin Trans. 1
1974,
1294