References
<A NAME="RG06502ST-1">1</A> Commercially available 3-nitro propionic acid can be quantitatively converted
into its methyl ester by treatment with Me2C(OMe)2 in MeOH in the presence of Me3SiCl (10 mol%):
Rodriguez A.
Nomen M.
Spur BW.
Tetrahedron Lett.
1998,
39:
8563
<A NAME="RG06502ST-2">2</A> Preparation of 1:
Ioffe SL.
Lyapkalo IM.
Tishkov AA.
Danilenko VM.
Strelenko YA.
Tartakovsky VA.
Tetrahedron
1997,
53:
13085
<A NAME="RG06502ST-3A">3a</A>
Ioffe SL.
Lyapkalo IM.
Makarenkova LM.
Russ. J. Org. Chem.
1998,
34:
1141 ; Russ. J. Org. Chem. (Engl. Transl.),
1998, 34, 1085
<A NAME="RG06502ST-3B">3b</A>
Tartakovsky VA.
Ioffe SL.
Dilman AD.
Tishkov AA.
Russ. Chem. Bull.
2001,
1850 ; Russ. Chem. Bull. (Engl. Transl.), 2001, 1936
<A NAME="RG06502ST-4A">4a</A>
Gilchrist TL.
Chem. Soc. Rev.
1983,
12:
53
<A NAME="RG06502ST-4B">4b</A>
Hippeli C.
Reissig H.-U.
Liebigs Ann. Chem.
1990,
217
<A NAME="RG06502ST-5A">5a</A>
Chrystal EJT.
Gilchrist TL.
Stretch W.
J. Chem. Res., Synop.
1987,
180
<A NAME="RG06502ST-5B">5b</A>
Chrystal EJT.
Gilchrist TL.
Stretch W.
J. Chem. Res., Miniprint
1987,
1563
<A NAME="RG06502ST-5C">5c</A>
Henning R.
Lerch U.
Urbach H.
Synthesis
1989,
265
<A NAME="RG06502ST-5D">5d</A>
Hippeli C.
Reissig H.-U.
Liebigs Ann. Chem.
1990,
475
<A NAME="RG06502ST-6A">6a</A>
Shatzmiller S.
Shalom E.
Liebigs Ann. Chem.
1983,
897
<A NAME="RG06502ST-6B">6b</A>
Faragher R.
Gilchrist TL.
J. Chem. Soc., Perkin Trans. 1
1979,
258
Recent advances in the chemistry of 1-azabutadienes are surveyed in the following
publications:
<A NAME="RG06502ST-7A">7a</A>
Tietze LF.
Kettschau G.
Top. Curr. Chem.
1997,
189:
1
<A NAME="RG06502ST-7B">7b</A>
Ishar MPS.
Jayakumar S.
Mahajan MP.
Tetrahedron
2002,
58:
379
<A NAME="RG06502ST-8">8</A>
General Procedure for Alkylation and Acylation via Deprotonation: 1,2-Oxazine 1 (375 mg, 2.00 mmol) in THF (4 mL) was added to a stirred solution of LiHMDS (2.4
mL of 1 M solution in THF, 2.4 mmol) or KHMDS (4.8 mL
of 0.5 M solution in toluene, 2.4 mmol) in THF (4 mL) at
-78 °C. After being stirred for 10 min the alkyl iodide (3.0 mmol) was added neat
via syringe and the reaction mixture was maintained under conditions as indicated
in Table 1. Then Et2O and sat. aq NH4Cl solution were added and the organic layer was separated. The water phase was extracted
with Et2O and the combined organic layers were washed with H2O and brine, dried over MgSO4 and evaporated in vacuum. The residue was subjected to column chromatography (silica
gel, hexane/EtOAc 3:1) to give analytically pure products. Analytical data of 2a, major isomer (higher Rf), colorless oil: 1H NMR (CDCl3, 270 MHz): δ = 7.32 (br s, 1 H, 3-H), 4.97 (ddd, J = 5.1, 3.2, 0.9 Hz, 1 H, 6-H), 3.87 (mc, 1 H, OCH2), 3.72 (s, 3 H, OMe), 3.54 (mc, 1 H, OCH2), 2.49 (dd, J = 13.7, 2.9 Hz, 1 H, 5-H), 1.82 (ddd, J = 13.7, 5.1, 1.0 Hz, 1 H, 5-H), 1.46 (s, 3 H, 4-Me), 1.18 (t, J = 7.1 Hz, 3 H, Me); 13C NMR (CDCl3, 67.9 MHz): δ = 173.5 (s, C=O), 151.0 (d, C-3), 96.6 (d, C-6), 64.8 (t, OCH2), 53.1 (q, MeO), 40.0 (s, C-4), 33.6 (t, C-5), 24.1 (q, 4-Me), 15.5 (q, Me); MS (pos.
FAB): m/z (%) = 202(100) [M+ + 1], 69(41), 55(54), 41(53). Anal. Calcd for C9H15NO4 (201.2): C, 53.72; H, 7.51; N, 6.96. Found: C, 53.21; H, 7.30; N, 6.68. Minor isomer
(lower Rf), colorless crystals, mp 29-30 °C (Et2O/hexane): 1H NMR (CDCl3, 270 MHz): δ = 7.36 (dd, J = 2.3, 2.0 Hz, 1 H, 3-H), 5.08 (ddd, J = 2.4, 2.3, 2.0 Hz, 1 H, 6-H), 3.73 (mc, 1 H, OCH2), 3.69 (s, 3 H, OMe), 3.47 (mc, 1 H, OCH2), 2.70 (dt, J = 13.7, 2.3 Hz, 1 H, 5-H), 1.70 (dd, J = 13.7, 2.4 Hz, 1 H, 5-H), 1.33 (s, 3 H, 4-Me), 1.09 (t, J = 7.0 Hz, 3 H, Me); 13C NMR (CDCl3, 67.9 MHz): δ = 174.0 (s, C=O), 151.8 (d, C-3), 94.6 (d, C-6), 63.3 (t, OCH2), 52.6 (q, MeO), 36.1 (s, C-4), 33.7 (t, C-5), 24.5 (q, 4-Me), 15.0 (q, Me); MS (pos.
FAB): m/z (%) = 202(100) [M+ + 1], 157(21), 69(43), 55(55), 41(48). Anal. Calcd for C9H15NO4 (201.2): C, 53.72; H, 7.51; N, 6.96. Found: C, 53.64; H, 7.45; N, 6.90.
<A NAME="RG06502ST-9">9</A>
General Procedures for Acylation with Na
2
CO
3
as a Base: The acyl chloride (1.3 equiv) was added at 0 °C to a stirred suspension of dry Na2CO3 (3 equiv) in a solution of 1,2-oxazine (1 equiv) in CH2Cl2 (5 mL to 1 mmol of oxazine). After being stirred for 10 min at 0 °C, the temperature
was increased to ambient, the reaction mixture was stirred for additional 30 min and
filtered. The filtrate was evaporated in vacuum to remove the excess of acyl chloride
and subjected to column chromatography (silica gel, hexane/EtOAc 3:1) to give analytically
pure products. Analytical data of 3c, colorless oil: 1H NMR (CDCl3, 270 MHz): δ = 8.18 (br s, 1 H, 3-H), 5.73 (ddt, J = 17.0, 10.1,
6.5 Hz, 1 H, =CH), 5.08 (t, J = 3.6 Hz, 1 H, 6-H), 4.95 (dq, J = 17.0, 1.4 Hz, 1 H, =CH2), 4.89 (dq, J = 10.1, 1.5 Hz, 1 H, =CH2), 3.76 (mc, 1 H, OCH2), 3.61 (s, 3 H, OMe), 3.57 (mc, 1 H, OCH2), 2.55 (mc, 3 H, 5-H, CH2), 2.39 (ddd, J = 17.2, 3.1, 1.3 Hz, 1 H, 5-H), 2.30 (q, J = 6.5 Hz, 2 H, CH2), 1.12 (t, J = 7.1 Hz, 3 H, Me); 13C NMR (CDCl3, 67.9 MHz): δ = 169.3, 166.7 (2 s, 2 C=O), 136.8 (d, =CH), 129.4 (d, C-3), 115.8
(t, =CH2), 104.2 (s, C-4), 100.2 (d, C-6), 65.6 (t, OCH2), 51.7 (q, MeO), 31.7 (t, CH2), 28.6 (t, C-5), 28.1 (t, CH2), 15.1 (q, Me); MS (EI, 80 eV): m/z (%) = 269(42) [M+], 187(100) [M+ - CH2=CHCH2CH=C=O], 155(71), 141(24), 83(19). Anal. Calcd for C13H19NO5 (269.3): C, 57.98; H, 7.11; N, 5.20. Found: C, 58.29; H, 6.96; N, 5.07.
<A NAME="RG06502ST-10">10</A>
General Procedure for Reduction with Raney-nickel: A commercially available 50% water suspension of Raney-nickel (ca. 7 mL to 1 mmol
of 1,2-oxazine) was washed 3 times with methanol, fresh methanol (10 mL to 1 mmol
of 1,2-oxazine) was placed in the flask and Boc2O (1.2 equiv) was added. After H2 was bubbled for 20 min through the resulting suspension, a solution of 1,2-oxazine
(1 equiv) in methanol (3 mL to 1 mmol of 1,2-oxazine) was added and the mixture was
stirred under H2 atmosphere for 24 h at ambient temperature. Then the catalyst was filtered off through
Celite, the filtrate was evaporated and the residue was subjected to column chromatography
(silica gel, hexane/EtOAc 3 1) to give analytically pure products. Analytical data
of 4b, colorless oil: 1H NMR (C6D5CD3, 500 MHz, 363 K): δ = 4.03 (d, J = 11.0 Hz, 1 H, 2-H), 3.58 (mc, 1 H, 5-H), 3.57 (s, 3 H, OMe), 3.51 (mc, 1 H, 5-H), 3.34 (d, J = 11.0 Hz, 1 H, 2-H), 2.33 (mc, 1 H, 4-H), 1.67 (s, 9 H, CMe3), 1.62 (ddd, J = 12.5, 6.0, 1.3 Hz, 1 H, 4-H), 1.31 (s, 3 H, 3-Me); 13C NMR (C6D5CD3, 125.8 MHz, 363 K): δ = 175.5 (s, 3-C=O), 154.4 (s, 1-C=O), 79.0, 28.9 (s, q, OCMe3), 55.9 (t, C-2), 51.6 (q, OMe), 48.8 (s, C-3), 45.4 (t, C-5), 36.2 (t, C-4), 22.5
(q, 3-Me); IR (Film): ν = 2975 (C-H), 2955 (C-H), 2930 (C-H), 1735 (C=O), 1700 (C=O),
1455, 1400, 1165, 1140, 1100 cm-1; MS (EI, 80 eV): m/z (%) = 243(3) [M+], 186(19) [M+ - CMe3], 170(11) [M+ - Me3CO], 142(21), 128(12), 115(11), 84(14), 57(100), 43(45). Anal. calcd for C12H21NO4 (243.3): C, 59.24; H, 8.70; N, 5.76. Found: C, 59.34; H, 8.62; N, 5.60.
The [4+2]-cycloreversion of 1,2-oxazines of compounds which are structurally similar
to 3 is known:
<A NAME="RG06502ST-11A">11a</A>
Goldberg I.
Saad D.
Shalom E.
Shatzmiller S.
J. Org. Chem.
1982,
47:
2192
<A NAME="RG06502ST-11B">11b</A>
see also ref.
[2]
[6a]
<A NAME="RG06502ST-12">12</A>
General Procedure for Intermolecular Trapping of 1-Azabutadiene A: A solution of 1,2-oxazines (1.00 mmol) and n-butyl vinyl ether (1.94 mL, 15.0 mmol) in toluene (50 mL) was refluxed for 1.5 h
(for 3a) or 4 h (for 3b), cooled down to ambient temperature and evaporated. The residue was subjected to
column chromatography (silica gel, hexane/EtOAc 3:1) to give analytically pure products.
Analytical data of 6a, colorless oil: 1H NMR (CDCl3, 270 MHz): δ = 7.69 (br s, 1 H, 2-H), 5.83 (br s, 1 H, 6-H), 3.73 (s, 3 H, OMe),
3.50 (mc, 2 H, OCH2), 2.38, 2.05 (2 mc, 4 H, 4-H, 5-H), 2.30 (s, 3 H, 1-Ac), 1.59-1.20 (m, 4 H, 2 CH2), 0.85 (t, J = 7.3 Hz, 3 H, Me); 13C NMR (CDCl3, 67.9 MHz): δ = 170.1, 167.9 (2 s, C=O), 133.7 (d, C-2), 110.8 (s, C-3), 76.4 (d,
C-6), 68.7 (t, OCH2), 51.9 (q, MeO), 32.0, 25.8 (2 t, C-4, C-5), 22.1 (q, 1-Me), 19.6, 16.9 (2 t, 2 CH2), 14.1 (q, 6-Me); MS (EI, 80 eV): m/z (%) = 255(42) [M+], 212(79) [M+ - Ac], 156(37), 140(100), 139(89), 138(48), 124(63). Anal. Calcd for C13H21NO4 (255.3): C, 61.16; H, 8.29; N, 5.49; Found: C, 60.98; H, 8.04; N, 5.57.
<A NAME="RG06502ST-13">13</A>
General Procedure for Intramolecular Trapping of 1-Azabutadiene A: A solution of 1,2-oxazines 3c,d (0.50 mmol) in toluene (18 mL) was refluxed for 40 min, cooled down to r.t. and evaporated
in vacuum. The residue was subjected to chromatography (silica gel, hexane/EtOAc 1:2)
and additionally recrystallized from hexane/toluene to give pure products. Analytical
data of 7a, colorless crystals [mp 142-143 °C (hexane/toluene)]: 1H NMR (CDCl3, 270 MHz): δ = 7.91 (br s, 1 H, 5-H), 3.72 (s, 3 H, OMe), 3.68 (mc, 1 H, 8a-H), 2.67-2.14 (m, 6 H, 7-H, 8-H, 9-H, 10-H), 1.81-1.61, 1.51-1.32 (2 m,
2 H, 9-H, 8-H); 13C NMR (CDCl3, 67.9 MHz): δ = 172.9, 168.1 (2 s, C=O), 130.7 (d, C-5), 110.9 (s, C-6), 55.7 (d,
C-8a), 51.7 (q, MeO), 31.7 (t, C-2), 28.0, 26.8, 22.3 (3 t, C-1, C-7, C-8); MS (EI,
80 eV): m/z (%) = 195(100) [M+], 164(64) [M+ - MeO], 140(42), 136(52), 108(17). Anal. Calcd for C10H13NO3 (195.2): C, 61.53; H, 6.71; N, 7.17. Found: C, 61.39; H, 6.71; N, 7.03.
<A NAME="RG06502ST-14">14</A>
Even very slow addition of the diluted solution of 3e into a large volume of boiling toluene did not lead to formation of a detectable
amount of the expected bicyclic compound 7c; instead, unidentifiable products of high molecular mass were isolated.
<A NAME="RG06502ST-15A">15a</A>
Michael JP.
Nat. Prod. Rep.
1994,
11:
17
<A NAME="RG06502ST-15B">15b</A>
Howard AS.
Michael JP. In The Alkaloids
Vol. 28:
Brossi A.
Academic Press;
New York:
1986.
p.183
A similar approach to the synthesis of indolizines and quinolizines by intramolecular
trapping of 1-aza-1,3-butadienes has been previously applied:
<A NAME="RG06502ST-16A">16a</A>
Jung ME.
Choi YM.
J. Org. Chem.
1991,
56:
6729
<A NAME="RG06502ST-16B">16b</A>
Cheng Y.-S.
Fowler FW.
Lupo AT.
J. Am. Chem. Soc.
1981,
103:
2090
<A NAME="RG06502ST-16C">16c</A>
Uyehara T.
Suzuki I.
Yamamoto Y.
Tetrahedron Lett.
1990,
31:
3753
<A NAME="RG06502ST-16D">16d</A>
Potts D.
Stevenson PJ.
Thompson N.
Tetrahedron Lett.
2000,
41:
275
<A NAME="RG06502ST-16E">16e</A>
Hwang YC.
Fowler FW.
J. Org. Chem.
1985,
50:
2719
<A NAME="RG06502ST-16F">16f</A>
Motorina IA.
Grierson DS.
Tetrahedron Lett.
1999,
40:
7215