Synlett 2025; 36(16): 2573-2576
DOI: 10.1055/s-0043-1775478
letter
Small Molecules in Medicinal Chemistry

Reactive Probe for Fluorescent Detection of Norepinephrine Based On an Excited-State Intramolecular Proton Transfer (ESIPT) Mechanism

Rajibul Haque
a   Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
c   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
,
b   Department of Oils, Lipid Science &Technology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
c   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
,
Rajkumar Banerjee
b   Department of Oils, Lipid Science &Technology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
c   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
,
Debabrata Maity
a   Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
c   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
› Author Affiliations

D.M. gratefully acknowledges the Director of the Council of Scientific and Industrial Research - Indian Institute of Chemical Technology (CSIR-IICT), India (MLP0108) and the Science and Engineering Research Board (SERB), India (SRG/2023/001243) for funding. The IICT Communication No. for this manuscript is IICT/Pubs./2025/028.


Preview

Abstract

Norepinephrine is a key neurotransmitter that plays a critical role in the sympathetic nervous system. Its misuse and lack of regulation is closely associated with the progression of different central nervous system syndromes and neurodegenerative disorders. Herein, a reactive probe based on an excited-state intramolecular proton transfer (ESIPT) mechanism is reported for the selective fluorescent detection of norepinephrine under physiological conditions and in live cells.

Supporting Information



Publication History

Received: 25 January 2025

Accepted after revision: 28 March 2025

Article published online:
14 May 2025

© 2025. Thieme. All rights reserved

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Berridge CW, Waterhouse BD. Brain Res. Rev. 2003; 42: 33
    • 1b Li J, Liu Y, Yuan L, Zhang B, Bishop ES, Wang K, Tang J, Zheng Y.-Q, Xu W, Niu S, Beker L, Li TL, Chen G, Diyaolu M, Thomas A.-L, Mottini V, Tok JB. H, Dunn JC. Y, Cui B, Paşca SP, Cui Y, Habtezion A, Chen X, Bao ZA. Nature 2022; 606: 94
    • 1c Breton-Provencher V, Drummond GT, Feng J, Li Y, Sur M. Nature 2022; 606: 732
  • 4 Squire LR, Bloom FE, Spitzer NC, Gage F, Albright T. Encyclopedia of Neuroscience, 1st Ed. Academic Press; New York: 2009: 1231
    • 5a Bundzikova-Osacka J, Ghosal S, Packard BA, Ulrich-Lai YM, Herman JP. Stress 2015; 18: 221
    • 5b Berridge CW, Spencer RC. Brain Res. 2016; 1641: 189
    • 5c Butkovich LM, Houser MC, Chalermpalanupap T, Porter-Stransky KA, Iannitelli AF, Boles JS, Lloyd GM, Coomes AS, Eidson LN, De Sousa Rodrigues ME, Oliver DL, Kelly SD, Chang J, Bengoa-Vergniory N, Wade-Martins R, Giasson BI, Joers V, Weinshenker D, Tansey MG. J. Neurosci. 2020; 40: 7559
    • 5d Kang SS, Ahn EH, Liu X, Bryson M, Miller GW, Weinshenker D, Ye K. Acta Neuropathol. 2021; 142: 139
    • 8a Pradhan T, Jung HS, Jang JH, Kim TW, Kang C, Kim JS. Chem. Soc. Rev. 2014; 43: 4684
    • 8b Dinarvand M, Elizarova S, Daniel J, Kruss S. ChemPlusChem 2020; 85: 1465
    • 8c Qiao J, Wu D, Song Y, Ji W, Yue Q, Mao L, Qi L. Anal. Chem. 2021; 93: 14743
    • 8d Zhou N, Yin CX, Yue YK, Huo FJ. Sens. Actuators, B 2022; 373: 132711
    • 8e Mei Y, Zhang QW, Gu Q, Liu Z, He X, Tian Y. J. Am. Chem. Soc. 2022; 144: 2351
    • 8f Yan H, Wang Y, Huo F, Yin C. J. Am. Chem. Soc. 2023; 145: 3229
    • 8g Bade A, Yadav P, Zhang L, Bypaneni RN, Xu M, Glass TE. Angew. Chem. Int. Ed. 2024; e202406401
    • 8h Zhou N, Huo F, Yin C. Coord. Chem. Rev. 2024; 518: 216062
    • 11a Wu J, Liu W, Ge J, Zhang H, Wang P. Chem. Soc. Rev. 2011; 40: 3483
    • 11b Sedgwick AC, Wu L, Han H.-H, Bull SD, He X.-P, James TD, Sessler JL, Tang BZ, Tian H, Yoon J. Chem. Soc. Rev. 2018; 47: 8842
    • 11c Maity D, Kumar V, Govindaraju T. Org. Lett. 2012; 14: 6008
    • 11d Gu H, Wang W, Wu W, Wang M, Liu Y, Jiao Y, Wang F, Wang F, Chen X. Chem. Commun. 2023; 59: 2056
    • 11e Udhayakumari D, Jerome P, Vijay N, Oh TH. J. Lumin. 2024; 267: 120350
    • 12a Brewer WE, Martinez ML, Chou PT. J. Phys. Chem. 1990; 94: 1915
    • 12b Lochbrunner S, Wurzer AJ, Riedle E. J. Chem. Phys. 2000; 112: 10699
    • 12c Lochbrunner S, Wurzer AJ, Riedle E. J. Phys. Chem. A 2003; 107: 10580
    • 12d Wang R, Liu D, Xu K, Li J. J. Photochem. Photobiol., A 2009; 205: 61
    • 12e Iijima T, Momotake A, Shinohara Y, Sato T, Nishimura Y, Arai T. J. Phys. Chem. A 2010; 114: 1603
    • 12f Zhao J, Ji S, Chen Y, Guo H, Yang P. Phys. Chem. Chem. Phys. 2012; 14: 8803
    • 12g Luber S, Adamczyk K, Nibbering ET. J, Batista VS. J. Phys. Chem. A 2013; 117: 5269
    • 12h Cheng J, Liu D, Li W, Bao L, Han K. J. Phys. Chem. C 2015; 119: 4242
    • 12i Li Y, Bai X, Liang R, Zhang X, Nguyen YH, VanVeller B, Du L, Phillips DL. J. Phys. Chem. B 2021; 125: 12981
    • 12j Draženović J, Rožić T, Došlić N, Basarić N. J. Org. Chem. 2022; 87: 9148
    • 12k Sil A, Mukhopadhyay M, Bose D. Macromol. Symp. 2023; 407: 2100375