Synthesis 2024; 56(07): 1043-1069
DOI: 10.1055/s-0042-1751544
review
Emerging Trends in Glycoscience

Stereochemical Aspects of the C-Glycosylation of Pyranosides and Furanosides

,
Ch. V. A. Sasikala
,
Debjit Basu
,
,
Rakeshwar Bandichhor


Abstract

The stereoselective synthesis of α- and β-C-glycosides is one of the most challenging areas of research in the field of glycoside chemistry. In this review, we summarize the various methods available for stereocontrolled glycosylation and also discuss the predictive models available to explain the stereochemical outcome of six- and five-membered-ring oxocarbenium ions with allyltrimethylsilane nucleophile under Lewis acid conditions.

1 Introduction

2 Stereochemical Aspects during Glycoside Bond Formation in Pyranosides

2.1 Lewis Acid Mediated Nucleophilic Addition to Six-Membered-Ring Oxocarbenium Ions

2.2 Arylalane Addition to Anhydroglucose

2.3 Glucal Epoxide Method

2.4 Glycosyl Leaving Group Substitution Method

2.5 Glycosylation via Transition-Metal-Mediated Cross-Coupling

3 Stereochemical Aspects during Glycoside Bond Formation in Furanosides­

3.1 Lewis Acid Mediated Nucleophilic Addition to Five-Membered-Ring Oxocarbenium Ions

4 Summary and Conclusion



Publikationsverlauf

Eingereicht: 01. Oktober 2023

Angenommen nach Revision: 01. Dezember 2023

Artikel online veröffentlicht:
26. Februar 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • Selected references:
    • 1a Paulsen BS. Glycosylated Natural Products . In Encyclopedia of Biophysics . Roberts GC. K. Springer; Berlin: 2013: 931
    • 1b Thorson JS, Vogt T. Glycosylated Natural Products . In Carbohydrate-Based Drug Discovery, Chap. 25. Wong C.-H. Wiley-VCH; Weinheim: 2005: 685-711
    • 1c Kren V. Chemical Biology and Biomedicine of Glycosylated Natural Compounds. In Glycoscience: Chemistry and Chemical Biology I–III, Chap. 9. Fraser-Reid BO, Tatsuta K, Thiem J. Springer; Berlin: 2001: 2471-2529

      Selected references:
    • 2a Bleil JD, Wassarman PM. Proc. Natl. Acad. Sci. U.S.A. 1990; 87: 5563
    • 2b Giannis A. Angew. Chem., Int. Ed. Engl. 1994; 33: 178
    • 2c Carbohydrates in Chemistry and Biology, Vol. 3. Ernst B, Hart GM, Sinaÿ P. VCH; Weinheim: 2000
    • 2d Lowe JB. Cell 2001; 104: 809
    • 2e Okajima T, Irvine KD. Cell 2002; 111: 893
    • 2f Fuster MM, Esko JD. Nat. Rev. Cancer 2005; 5: 526
    • 2g Mukherjee MM, Ghosh R, Hanover JA. Front. Mol. Biosci. 2002; 9: 1

      Selected references for N-glycosides:
    • 3a Vorbrüggen H, Ruh-Pohlenz C. Org. React. 2000; 55: 3
    • 3b Wilson LJ, Hager MW, El-Kattan Y, Liotta DC. Synthesis 1995; 1465
    • 3c Lukevics VE, Zablocka A. Nucleoside Synthesis: Organosilicon Methods . Ellis Horwood; New York: 1991

      Selected references for C-glycosides:
    • 4a Dondoni A, Marra A. Chem. Rev. 2000; 100: 4395
    • 4b Koester DC, Holkenbrink A, Werz DB. Synthesis 2010; 3217
    • 4c Leclerc E, Pannecoucke X, Ethève-Quelquejeu M, Sollogoub M. Chem. Soc. Rev. 2013; 42: 4270
    • 4d Zou W. Curr. Top. Med. Chem. 2005; 5: 1363
    • 4e Compain P, Martin OR. Bioorg. Med. Chem. 2001; 9: 3077
    • 4f Yang G, Schmieg J, Tsuji M, Franck RW. Angew. Chem. Int. Ed. 2004; 43: 3818
    • 4g Franck RW, Tsuji M. Acc. Chem. Res. 2006; 39: 692
    • 4h Bokor E, Kun S, Goyard D, Tóth M, Praly J.-P, Vidal S, Somsák L. Chem. Rev. 2017; 117: 1687
    • 4i Azeem Z, Mandal PK. Org. Biomol. Chem. 2022; 20: 264
    • 4j Xu LY, Fan NL, Hu XG. Org. Biomol. Chem. 2020; 18: 5095
  • 5 Cao X, Du X, Jiao H, An Q, Chen R, Fang P, Wang J, Yu B. Acta Pharm. Sin. B 2022; 12: 3783

    • Selected references for the construction of C-glycoside bond:
    • 6a Parida SP, Das T, Ahemad AM, Pati T, Mohapatra S, Nayak S. Carbohydr. Res. 2023; 530: 108556
    • 6b Yang Y, Yu B. Chem. Rev. 2017; 117: 12281
    • 6c Lalitha K, Muthusamy YS, Prasad PK, Vemula NS. Carbohydr. Res. 2015; 402: 158
    • 6d Wellington KW, Ooi HC, Benner SA. Nucleic Acids 2009; 28: 275
    • 6e Lee DY, He M. Curr. Top. Med. Chem. 2005; 5: 1333
    • 6f Liu L, Postema MH. D. J. Am. Chem. Soc. 2001; 123: 8602
    • 6g Du Y, Linhardt JR. Tetrahedron 1998; 54: 9913
    • 7a Stoddart JF. Stereochemistry of Carbohydrates . Wiley-Interscience; New York: 1971
    • 7b Stick VR, Williams JS. Carbohydrates: The Essential Molecules of Life, 2nd ed. Elsevier Science; Oxford: 2009
  • 8 Miljkovič M. Conformational Analysis of Monosaccharides. In Carbohydrates. Springer; New York: 2010: 27
  • 9 Fuchs B. Top. Stereochem. 1978; 10: 1
  • 10 Kaspar F, Stone RM, Neubauer P, Kurreck A. Green Chem. 2021; 23: 37
    • 12a Frihed TG, Bols M, Pedersen CM. Chem. Rev. 2015; 115: 4963
    • 12b Adero PO, Amarasekara H, Wen P, Bohé L, Crich D. Chem. Rev. 2018; 118: 8242
    • 13a Kafle A, Liu J, Cui L. Can. J. Chem. 2016; 94: 894
    • 13b Demchenko AV. Handbook of Chemical Glycosylation . Wiley; Weinheim: 2008
    • 13c van der Vorm S, Hansen T, Overkleeft HS, van der Marel GA, Codée JD. C. Chem. Sci. 2017; 8: 1867
    • 13d Guo J, Ye X.-S. Molecules 2010; 15: 7235

      Experimental studies:
    • 14a Toshima K, Tatsuta K. Chem. Rev. 1993; 93: 1503 ; and references therein
    • 14b Hanessian S. Preparative Carbohydrate Chemistry . Marcel Dekker; New York: 1996

      Theoretical studies:
    • 15a Juaristi E, Cuevas G. Tetrahedron 1992; 48: 5019
    • 15b The Anomeric Effect and Associated Stereoelectronic Effects . Thatcher GR. J. ACS Symposium Series 539; American Chemical Society; Washington DC: 1993
    • 15c Thibaudeau C, Chattopadhyaya J. Stereoelectronic Effects in Nucleosides and Nucleotides and Their Structural Implications. Uppsala University Press; Uppsala: 1999
    • 16a Pothier N, Goldstein S, Deslongchamps P. Helv. Chim. Acta 1992; 75: 604
    • 16b Deslongchamps P, Dory YL, Li S. Can. J. Chem. 1994; 72: 2021
  • 17 Deslongchamps P. Stereoelectronic Effects in Organic Chemistry . Pergamon; Oxford: 1983: 209-221
  • 18 It has been recognized that from the viewpoint of stereoelectronic effects, the axial attack of nucleophiles at an electrophilic carbon center in six-membered-ring systems such as cyclohexanones, cyclohexenones, or piperidyl iminium ions is favored over the corresponding equatorial attack; see ref. 18.
  • 19 Cieplak AS. J. Am. Chem. Soc. 1981; 103: 4540
  • 20 In hexopyranoses, such as glucose or mannose derivatives, the steric effect due to the hydroxymethyl moiety attached at the 5-position would affect the stereoselectivity of the anomeric radical reaction, which may disturb the exact estimation of the anomeric effect on the stereoselectivity.
  • 21 Juaristi E, Cuevas G. The Anomeric Effect . CRC Press; Boca Raton: 1995
  • 22 Lewis MD, Cha JK, Kishi Y. J. Am. Chem. Soc. 1982; 104: 4976
    • 23a Babirad SA, Wang Y, Kishi Y. J. Org. Chem. 1987; 52: 1370
    • 23b Wang Y, Babirad SA, Kishi Y. J. Org. Chem. 1992; 57: 468
    • 23c Ellsworth BA, Doyle AG, Patel M, Caceres-Cortes J, Meng W, Deshpande PP, Pullockaran A, Washburn WN. Tetrahedron: Asymmetry 2003; 14: 3243
    • 24a Kraus G, Molina M. J. Org. Chem. 1988; 53: 752
    • 24b Czernecki S, Ville G. J. Org. Chem. 1989; 54: 610
    • 25a Martin A, Arda A, Désiré J, Martin-Mingot A, Probst N, Sinaÿ P, Jiménez-Barbero J, Thibaudeau S, Blériot Y. Nat. Chem. 2016; 8: 186
    • 25b Elferink H, Severijnen ME, Martens J, Mensink RA, Berden G, Oomens J, Rutjes FP. J. T, Rijs AM, Boltje TJ. J. Am. Chem. Soc. 2018; 140: 6034
    • 25c Mucha E, Marianski M, Xu FF, Thomas DA, Meijer G, von Helden G, Seeberger PH, Pagel K. Nat. Commun. 2018; 9: 4174
    • 25d Hansen T, Lebedel L, Remmerswaal AW, van der Vorm S, Wander DP. A, Somers M, Overkleeft HS, Filippov DV, Désiré J, Mingot A, Blériot Y, van der Marel GA, Thibaudeau S, Codée JD. C. ACS Central Sci. 2019; 5: 781
    • 25e Demkiw KM, Remmerswaal WA, Hansen T, van de Marel G, Codée JD. C, Woerpel KA. Angew. Chem. Int. Ed. 2022; 61: e202209401
    • 26a Walvoort MT. C, Dinkelaar J, van den Bos JL, Lodder G, Voerkleeft HS, Codée JD. C, van der Marel GA. Carbohydr. Res. 2010; 345: 1252
    • 26b Rijssel ER, van Delft P, Lodder G, Overkleeft HS, van der Marel GA, Filippov DV, Codée JD. C. Angew. Chem. Int. Ed. 2014; 53: 10381
    • 26c Rijssel ER, van Delft P, van Marle DV, Bijvoets SM, Lodder G, Overkleeft HS, van der Marel GA, Filippov DV, Codée JD. C. J. Org. Chem. 2015; 80: 4553
    • 26d Hagen B, van der Vorm S, Hansen T, van der Marel GA, Codée JD. C. Stereoselective Glycosylations – Additions to Oxocarbenium Ions . In Stereoselective Glycosylations – Synthetic Methods and Catalysts, Chap. 1. Bennett CS. Wiley-VCH; Weinheim: 2017: 1-28
    • 26e Remmerswaal WA, Hansen T, Hamlin TA, Codée JD. C. Chem. Eur. J. 2023; 29: e202203490
  • 27 Seeman JI. Chem. Rev. 1983; 83: 83
    • 28a Woods RJ, Andrews CW, Bowen JP. J. Am. Chem. Soc. 1992; 114: 859
    • 28b Miljković M, Yeagley D, Deslongchamps P, Dory YL. J. Org. Chem. 1997; 62: 7597
    • 28c Dudley TJ, Smoliakova IP, Hoffmann MR. J. Org. Chem. 1999; 64: 1247
    • 29a Larsen CH, Ridgway BH, Shaw JT, Woerpel KA. J. Am. Chem. Soc. 1999; 121: 12208
    • 29b Romero JA. C, Tabacco SA, Woerpel KA. J. Am. Chem. Soc. 2000; 122: 168
    • 29c Ayala L, Lucero CG, Romero JA. C, Tabacco SA, Woerpel KA. J. Am. Chem. Soc. 2003; 125: 15521
    • 29d Larsen CH, Ridgway BH, Shaw JT, Smith DM, Woerpel KA. J. Am. Chem. Soc. 2005; 127: 10879
    • 29e Lucero CG, Woerpel KA. J. Org. Chem. 2006; 71: 2641
    • 29f Lavinda O, Tran VT, Woerpel KA. Org. Biomol. Chem. 2014; 12: 7083
    • 29g Bear TJ, Shaw JT, Woerpel KA. J. Org. Chem. 2002; 67: 2056
    • 30a Tamura S, Abe H, Matsuda A, Shuto S. Angew. Chem. Int. Ed. 2003; 42: 1021
    • 30b Huang M, Garrett GE, Birlirakis N, Bohe L, Pratt DA, Crich D. Nat. Commun. 2018; 9: 1
    • 30c Crich D, Chandrasekera NS. Angew. Chem. Int. Ed. 2004; 43: 5386
    • 30d Adero PO, Furukawa T, Huang M, Mukherjee D, Retailleau P, Bohe L, Crich D. J. Am. Chem. Soc. 2015; 137: 10336
    • 30e Huang M, Retailleau P, Bohé L, Crich D. J. Am. Chem. Soc. 2012; 134: 14746
  • 31 Blériot Y. The Oxocarbenium Ion Intermediate . In Comprehensive Glycoscience, 2nd ed., Chap. 2.02, Vol. 2. Vidal S. Elsevier; Amsterdam: 2021: 49-82
  • 32 Miljković M. Conformations and Chemistry of Oxocarbenium Ion. In Electrostatic and Stereoelectronic Effects in Carbohydrate Chemistry, Chap. 4. Springer; Boston: 2014: 87-115
    • 33a Henschke JP, Wu P.-Y, Lin C.-W, Chen S.-F, Chiang P.-C, Hsiao C.-N. J. Org. Chem. 2015; 80: 2295
    • 33b Henschke JP, Lin C.-W, Wu P.-Y, Tsao W.-S, Liao J.-H, Chiang P.-C. J. Org. Chem. 2015; 80: 5189
    • 33c Henschke JP, Lin C.-W, Wu P.-Y, Hsiao C.-N, Liao J.-H, Hsiao T.-Y. PCT Int. Appl. Pub WO2013/068850, 2013
  • 34 Modern Organoaluminum Reagents . In Topics in Organometallic Chemistry, Vol. 41. Woodward S, Dagorne S. Springer; Berlin: 2013
  • 35 Eckhardt M, Himmelsbach F. US 7847074 B2, 2010
  • 36 Allwein SP, Cox JM, Johnson HW. B, Rainier JD. Tetrahedron 2002; 58: 1997

    • Additional examples for β-selectivity:
    • 37a Rainier JD, Allwein SP. J. Org. Chem. 1998; 63: 5310
    • 37b Rainier JD, Allwein SP, Cox JM. J. Org. Chem. 2001; 66: 1380
    • 37c Cox JM, Rainier JD. Org. Lett. 2001; 3: 2919
    • 37d Best WM, Ferro V, Harle J, Stick RV, Tilbrook DM. G. Aust. J. Chem. 1997; 50: 463
    • 37e Evans DA, Trotter BW, Cote B. Tetrahedron Lett. 1998; 39: 1709
    • 37f Evans DA, Trotter BW, Cote B, Dias LC, Rajapakse HA, Tyler AN. Tetrahedron 1999; 55: 8671
    • 37g Klein LL, McWhorter JrW. W, Ko SS, Pfaff K.-P, Kishi Y, Uemura D, Hirta Y. J. Am. Chem. Soc. 1982; 104: 7362
    • 37h Bellosta V, Czernecki S. J. Chem. Soc., Chem. Commun. 1989; 199
    • 37i Timmers CM, Dekker M, Buijsman RC, van der Marel GA, Ethell B, Anderson G, Burchell B, Mulder GJ, Van Boom JH. Bioorg. Med. Chem. Lett. 1997; 7: 1501
    • 37j Guo JS, Duffy JJ, Stevens KL, Dalko PI, Roth RM, Hayward MM, Kishi Y. Angew. Chem. Int. Ed. 1998; 37: 187
  • 38 Bailey JM, Craig D, Gallagher PT. Synlett 1999; 132
    • 39a Fügedi P, Garegg PJ. Carbohydr. Res. 1986; 149: C9
    • 39b Banoub J, Boullanger P, Lafont D. Chem. Rev. 1992; 92: 1167
    • 39c Hettikankanamalage AA, Lassfolk R, Ekholm FS, Leino R, Crich D. Chem. Rev. 2020; 120: 7104
    • 40a Koto S, Yago K, Zen S, Tomonaga F, Shimada S. Bull. Chem. Soc. Jpn. 1986; 59: 411
    • 40b Mukaiyama T, Suenaga M, Chiba H, Jona H. Chem. Lett. 2002; 31: 56
    • 40c Yao D, Liu Y, Yan S, Li Y, Hu C, Ding N. Chem. Commun. 2017; 53: 2986
    • 41a Yasomanee JP, Demchenko AV. J. Am. Chem. Soc. 2012; 134: 20097
    • 41b Yasomanee JP, Demchenko AV. Chem. Eur. J. 2015; 21: 6572
    • 42a Ishiwata A, Lee YJ, Ito Y. Org. Biomol. Chem. 2010; 8: 3596
    • 42b Pornsuriyasak P, Jia XG, Kaeothip S, Demchenko AV. Org. Lett. 2016; 18: 2316
    • 42c Jia XG, Demchenko AV. Beilstein J. Org. Chem. 2017; 13: 2028
  • 43 Jeanneret RA, Johnson SE, Galan MC. J. Org. Chem. 2020; 85: 15801
    • 44a Knochel P, Jones P. Organozinc Reagents . Oxford University Press; Oxford: 1999
    • 44b Kobayashi K, Naka H, Wheatley AE. H, Kondo Y. Org. Lett. 2008; 10: 3375
    • 44c Kobayashi K, Ueno M, Wheatley AE. H, Kondo Y. Chem. Commun. 2006; 3549

      Via intramolecular migration of arylsiloxanes:
    • 45a Nakazaki A, Uzuki J, Tomooka K. Synlett 2008; 2064
    • 45b Rousseau C, Martin OR. Org. Lett. 2003; 5: 3763

    • Via cuprates:
    • 45c Hainke S, Singh I, Hemmings J, Seitz O. J. Org. Chem. 2007; 72: 8811

    • With soft nucleophiles:
    • 45d Pasetto P, Walczak MC. Tetrahedron 2009; 65: 8468
    • 45e Yamauchi T, Shigeta M, Matsumoto T, Suzuki K. Heterocycles 2005; 66: 153
    • 45f Gervay J, Hadd MJ. J. Org. Chem. 1997; 62: 6961

    • Via Grignard reagents:
    • 45g Ruttens B, Blom P, Van Hoof S, Hubrecht I, Van der Eycken J, Sas B, VanHemel J, Vandenkerckhove J. J. Org. Chem. 2007; 72: 5514
    • 45h Kulkarni SS, Gervay-Hague J. Org. Lett. 2006; 8: 5765
    • 45i Panigot MJ, Humphries KA, Curley RW. Jr. J. Carbohydr. Chem. 1994; 13: 303
    • 45j Hurd CD, Holysz RP. J. Am. Chem. Soc. 1950; 72: 1732
    • 45k Hurd CD, Bonner WA. J. Am. Chem. Soc. 1945; 67: 1972

    • Via organozinc reagents:
    • 45l Zhdanov YA, Dorofeenko GN, Bogdanova GV. Dokl. Akad. Nauk SSSR 1958; 119: 861

    • Via organotrifluoroborates:
    • 45m Zeng J, Vedachalam S, Xiang S, Liu X.-W. Org. Lett. 2011; 13: 44

    • O- to C-Glycoside rearrangement:
    • 45n Ben A, Yamauchi T, Matsumoto T, Suzuki K. Synlett 2004; 225
    • 46a Ustyuzhanina N, Komarova B, Zlotina N, Krylov V, Gerbst A, Tsvetkov Y, Nifantiev N. Synlett 2006; 921
    • 46b Baek JY, Lee BY, Jo MG, Kim KS. J. Am. Chem. Soc. 2009; 131: 17705
    • 46c Crich D, Cai W, Dai Z. J. Org. Chem. 2000; 65: 1291
  • 47 Lemaire S, Houpis IN, Xiao T, Li J, Digard E, Gozlan C, Liu R, Gavryushin A, Diene C, Wang Y, Farina V, Knochel P. Org. Lett. 2012; 14: 1480

    • Selected references for the Hiyama–Denmark coupling reaction:
    • 48a Denmark SE, Kobayashi T, Regens CS. Tetrahedron 2010; 66: 4745
    • 48b Vaňková K, Rahm M, Choutka J, Pohl R, Parkan K. Chem. Eur. J. 2021; 27: 10583

      Selected references for the Heck coupling reaction:
    • 49a Wellington KW, Benner SA. Nucleosides Nucleotides Nucleic Acids 2006; 25: 1309
    • 49b Otte F, Schmidt B. J. Org. Chem. 2019; 84: 14816

      Selected references for the Stille coupling reaction:
    • 50a Choutka J, Pohl R, Parkan K. ACS Omega 2018; 3: 7875
    • 50b Dubois E, Beau J.-M. Carbohydr. Res. 1992; 228: 103

      Selected references for the Suzuki–Miyaura coupling reaction:
    • 51a Parkan K, Pohl R, Kotora M. Chem. Eur. J. 2014; 20: 4414
    • 51b Gong L, Sun H.-B, Deng L.-F, Zhang X, Liu J, Yang S, Niu D. J. Am. Chem. Soc. 2019; 141: 7680

      Selected references for the Negishi coupling reaction:
    • 52a Friesen RW, Loo RW. J. Org. Chem. 1991; 56: 4821
    • 52b Tius MA, Gu XQ, Gomez-Galeno J. J. Am. Chem. Soc. 1990; 112: 8188
  • 53 For Stille cross-coupling reaction of aryl halides with glycosyl stannanes: Zhu F, Rodriguez J, Yang T, Kevlishvili I, Miller E, Yi D, O’Neill S, Rourke MJ, Liu P, Walczak MA. J. Am. Chem. Soc. 2017; 139: 17908
  • 55 Callam CS, Gadikota RR, Krein DM, Lowary TL. J. Am. Chem. Soc. 2003; 125: 12112
    • 56a Yin HF, D’Souza FW, Lowary TL. J. Org. Chem. 2002; 67: 892
    • 56b Joe M, Sun D, Taha H, Completo GC, Croudace JE, Lammas DA, Besra GS, Lowary TL. J. Am. Chem. Soc. 2006; 128: 5059
    • 56c Lee JY, Lee K, Jung EH, Jeon HB, Kim KS. Org. Lett. 2005; 7: 3263
    • 56d Baek JY, Joo YJ, Kim KS. Tetrahedron Lett. 2008; 49: 4734
    • 56e Mukaiyama T, Suda S. Chem. Lett. 1990; 19: 1143
    • 56f Sollogoub M, Fox KR, Powers VE. C, Brown T. Tetrahedron Lett. 2002; 43: 3121
    • 58a Sammakia T, Smith RS. J. Am. Chem. Soc. 1994; 116: 7915
    • 58b Matsutani H, Ichikawa S, Yaruva J, Kusumoto T, Hiyama T. J. Am. Chem. Soc. 1997; 119: 4541

    • Other reactions of acetals do not appear to involve free cations:
    • 58c Denmark SE, Almstead NG. J. Am. Chem. Soc. 1991; 113: 8089
  • 59 Araki Y, Kobayashi N, Ishido Y, Nagasawa J. Carbohydr. Res. 1987; 171: 125
  • 60 Mukaiyama T, Shimpuku T, Takashima T, Kobayashi S. Chem. Lett. 1989; 18: 145
  • 61 For a recent example, see: Jaouen V, Jégou A, Lemée L, Veyriéres A. Tetrahedron 1999; 55: 9245
    • 62a Schmitt A, Reissig H.-U. Chem. Ber. 1995; 128: 871
    • 62b Schmitt A, Reissig H.-U. Eur. J. Org. Chem. 2000; 3893
    • 62c Schmitt A, Reissig H.-U. Eur. J. Org. Chem. 2001; 1169
  • 63 Mehta G, Sengupta S. Tetrahedron Lett. 1996; 37: 8625
  • 64 Rhoad JS, Cagg BA, Carver PW. J. Phys. Chem. A 2010; 114: 5180