Synlett 2023; 34(13): 1554-1562
DOI: 10.1055/s-0042-1751429
account

Advances in Selected Heterocyclization Methods

a   Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
b   Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
,
Vladimir Gevorgyan
a   Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, USA
b   Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
› Institutsangaben
The authors thank the National Institutes of Health (NIH, GM120281 and F31GM139395), the National Science Foundation (CHE-1955663), the Welch Foundation (Chair, AT-0041) and the Eugene McDermott Graduate Fellowship (202007) for financial support.


Abstract

This Account summarizes efforts in our group toward synthesis of heterocycles in the past decade. Selected examples of transannulative heterocyclizations, intermediate construction of reactive compounds en route to these important motifs, and newer developments of a radical approach are outlined.

1 Introduction

2 Transannulative Heterocyclization

2.1 Rhodium-Catalyzed Transannulative Heterocyclization

2.2 Copper-Catalyzed Transannulative Heterocyclization

3 Synthesis of Heterocycles from Reactive Precursors

3.1 Synthesis of Heterocycles from Diazo Compounds

3.2 Synthesis of Heterocycles from Alkynones

4 Radical Heterocyclization

4.1 Light-Induced Radical Heterocyclization

4.2 Light-Free Radical Heterocyclization

7 Conclusion



Publikationsverlauf

Eingereicht: 23. Dezember 2022

Angenommen nach Revision: 13. Februar 2023

Artikel online veröffentlicht:
10. März 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 New address: Life Sciences Institute, Mary Sue Coleman Hall, 210 Washtenaw Avenue, University of Michigan, Ann Arbor, MI 48109-2216, USA.
    • 2a Gevorgyan V, Rubin M, Sromek AW. Synlett 2003; 2265
    • 2b Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V. Chem. Rev. 2013; 113: 3084
    • 2c Gulevich AV, Gevorgyan V. Angew. Chem. Int. Ed. 2013; 52: 1371
    • 2d Shiroodi RK, Gevorgyan V. Chem. Soc. Rev. 2013; 42: 4991
    • 2e Volkova Y, Gevorgyan V. Chem. Heterocycl. Compd. 2017; 53: 409
    • 2f Yadagiri D, Rivas M, Gevorgyan V. J. Org. Chem. 2020; 85: 11030
  • 3 Dimroth O. Justus Liebigs Ann. Chem. 1909; 364: 183
    • 4a von Fraunberg K, Huisgen R. Tetrahedron Lett. 1969; 10: 2599
    • 4b Huisgen R, von Fraunberg K, Sturm HJ. Tetrahedron Lett. 1969; 10: 2589
    • 4c Huisgen R, von Fraunberg KV. Tetrahedron Lett. 1969; 10: 2595
  • 5 Akter M, Rupa K, Anbarasan P. Chem. Rev. 2022; 122: 13108
    • 6a Chuprakov S, Hwang FW, Gevorgyan V. Angew. Chem. Int. Ed. 2007; 46: 4757
    • 6b Chuprakov S, Gevorgyan V. Org. Lett. 2007; 9: 4463
    • 6c Horneff T, Chuprakov S, Chernyak N, Gevorgyan V, Fokin VV. J. Am. Chem. Soc. 2008; 130: 14972
    • 6d Chattopadhyay B, Gevorgyan V. Org. Lett. 2011; 13: 3746
    • 7a Davies HM. L, Alford JS. Chem. Soc. Rev. 2014; 43: 5151
    • 7b Jiang Y, Sun R, Tang X.-Y, Shi M. Chem. Eur. J. 2016; 22: 17910
    • 7c Volkova YA, Gorbatov SA. Chem. Heterocycl. Compd. 2016; 52: 216
    • 9a Abarca B, Ballesteros R, Mojarred F, Jones G, Mouat DJ. J. Chem. Soc., Perkin Trans. 1 1987; 1865
    • 9b Wang C, Zhou Y, Bao X. J. Org. Chem. 2017; 82: 3751
    • 10a Volpi G, Rabezzana R. New J. Chem. 2021; 45: 5737
    • 10b Ramana Reddy M, Darapaneni CM, Patil RD, Kumari H. Org. Biomol. Chem. 2022; 20: 3440
  • 11 Shi Y, Gevorgyan V. Org. Lett. 2013; 15: 5394
  • 12 Shi Y, Gulevich AV, Gevorgyan V. Angew. Chem. Int. Ed. 2014; 53: 14191
  • 13 Kurandina D, Gevorgyan V. Org. Lett. 2016; 18: 1804
  • 14 Kim H, Kim S, Kim J, Son J.-Y, Baek Y, Um K, Lee PH. Org. Lett. 2017; 19: 5677
  • 15 Lv X, Yang H, Shi T, Xing D, Xu X, Hu W. Adv. Synth. Catal. 2019; 361: 1265
  • 16 Filippov IP, Novikov MS, Khlebnikov AF, Rostovskii NV. Eur. J. Org. Chem. 2020; 2904
  • 17 Helan V, Gulevich AV, Gevorgyan V. Chem. Sci. 2015; 6: 1928
  • 18 Shi Y, Gevorgyan V. Chem. Commun. 2015; 51: 17166
    • 19a Schwier T, Sromek AW, Yap DM, Chernyak D, Gevorgyan V. J. Am. Chem. Soc. 2007; 129: 9868
    • 19b Kim JT, Gevorgyan V. J. Org. Chem. 2005; 70: 2054
    • 19c Kim JT, Butt J, Gevorgyan V. J. Org. Chem. 2004; 69: 5638
    • 19d Kel’in AV, Sromek AW, Gevorgyan VA. J. Am. Chem. Soc. 2001; 123: 2074
    • 20a Seregin IV, Schammel AW, Gevorgyan V. Org. Lett. 2007; 9: 3433
    • 20b Seregin IV, Gevorgyan V. J. Am. Chem. Soc. 2006; 128: 12050
    • 20c Hardin AR, Sarpong R. Org. Lett. 2007; 9: 4547
    • 20d Smith CR, Bunnelle EM, Rhodes AJ, Sarpong R. Org. Lett. 2007; 9: 1169
    • 20e Yan B, Zhou Y, Zhang H, Chen J, Liu Y. J. Org. Chem. 2007; 72: 7783
    • 21a Chernyak D, Gadamsetty SB, Gevorgyan V. Org. Lett. 2008; 10: 2307
    • 21b Chernyak D, Gevorgyan V. Chem. Heterocycl. Compd. 2012; 47: 1516
    • 21c Chernyak D, Gevorgyan V. Org. Lett. 2010; 12: 5558
    • 21d Chernyak N, Tilly D, Li Z, Gevorgyan V. Chem. Commun. 2010; 46: 150
    • 21e Chernyak N, Tilly D, Li Z, Gevorgyan V. ARKIVOC 2011; 76
    • 21f Li Z, Chernyak D, Gevorgyan V. Org. Lett. 2012; 14: 6056
    • 21g Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. ChemistrySelect 2022; 7: e202200531
  • 22 Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Chem. Rev. 2013; 113: 6234
  • 23 Wang Y, Gulevich AV, Gevorgyan V. Chem. Eur. J. 2013; 19: 15836
  • 24 Chernyak N, Gevorgyan V. Angew. Chem. Int. Ed. 2010; 49: 2743
  • 25 Rassokhina IV, Tikhonova TA, Kobylskoy SG, Babkin IY, Shirinian VZ, Gevorgyan V, Zavarzin IV, Volkova YA. J. Org. Chem. 2017; 82: 9682
  • 26 Kuznetsov A, Makarov A, Rubtsov AE, Butin AV, Gevorgyan V. J. Org. Chem. 2013; 78: 12144
    • 27a Parasram M, Iaroshenko VO, Gevorgyan V. J. Am. Chem. Soc. 2014; 136: 17926
    • 27b Ghavtadze N, Melkonyan FS, Gulevich AV, Huang C, Gevorgyan V. Nat. Chem. 2014; 6: 122
    • 27c Kuznetsov A, Onishi Y, Inamoto Y, Gevorgyan V. Org. Lett. 2013; 15: 2498
    • 27d Huang C, Ghavtadze N, Godoi B, Gevorgyan V. Chem. Eur. J. 2012; 18: 9789
    • 27e Kuznetsov A, Gevorgyan V. Org. Lett. 2012; 14: 914
    • 27f Huang C, Gevorgyan V. J. Am. Chem. Soc. 2009; 131: 10844
  • 28 Chuentragool P, Li Z, Randle K, Mahchi F, Ochir I, Assaf S, Gevorgyan V. J. Organomet. Chem. 2018; 867: 273
  • 29 Gulevich AV, Helan V, Wink DJ, Gevorgyan V. Org. Lett. 2013; 15: 956
  • 30 Kuznetsov A, Gulevich AV, Wink DJ, Gevorgyan VA. Angew. Chem. Int. Ed. 2014; 53: 9021
  • 31 Singaram I, Sharma A, Pant S, Lihan M, Park M.-J, Pergande M, Buwaneka P, Hu Y, Mahmud N, Kim Y.-M, Cologna S, Gevorgyan V, Khan I, Tajkhorshid E, Cho W. Nat. Chem. Biol. 2023; 19: 239
    • 32a Dudnik AS, Chernyak N, Gevorgyan V. Aldrichimica Acta 2010; 43: 37
    • 32b Dudnik AS, Gevorgyan V. Angew. Chem. Int. Ed. 2010; 49: 2096
    • 32c Sromek AW, Gevorgyan V. Top. Curr. Chem. 2007; 274: 77
    • 32d Dudnik AS, Schwier T, Gevorgyan V. Org. Lett. 2008; 10: 1465
    • 32e Dudnik AS, Sromek AW, Rubina M, Kim JT, Kel’in AV, Gevorgyan V. J. Am. Chem. Soc. 2008; 130: 1440
    • 32f Dudnik AS, Schwier T, Gevorgyan V. Tetrahedron 2009; 65: 1859
    • 32g Dudnik AS, Xia Y, Li Y, Gevorgyan V. J. Am. Chem. Soc. 2010; 132: 7645
    • 32h Xia Y, Dudnik AS, Li Y, Gevorgyan V. Org. Lett. 2010; 12: 5538
    • 32i Shiroodi RK, Dudnik AS, Gevorgyan V. J. Am. Chem. Soc. 2012; 134: 6928
  • 33 Shiroodi RK, Soltani M, Gevorgyan V. J. Am. Chem. Soc. 2014; 136: 9882
  • 34 Yang W.-C, Chen C.-Y, Li J.-F, Wang Z.-L. Chin. J. Catal. 2021; 42: 1865
  • 35 Zhang Z, Yadagiri D, Gevorgyan V. Chem. Sci. 2019; 10: 8399
  • 36 Parasram M, Chuentragool P, Sarkar D, Gevorgyan V. J. Am. Chem. Soc. 2016; 138: 6340
  • 37 Ratushnyy M, Parasram M, Wang Y, Gevorgyan V. Angew. Chem. Int. Ed. 2018; 57: 2712
    • 38a Kurandina D, Parasram M, Gevorgyan V. Angew. Chem. Int. Ed. 2017; 56: 14212
    • 38b Parasram M, Chuentragool P, Wang Y, Shi Y, Gevorgyan V. J. Am. Chem. Soc. 2017; 139: 14857
    • 38c Parasram M, Gevorgyan V. Chem. Soc. Rev. 2017; 46: 6227
    • 38d Chuentragool P, Parasram M, Shi Y, Gevorgyan V. J. Am. Chem. Soc. 2018; 140: 2465
    • 38e Kurandina D, Rivas M, Radzhabov M, Gevorgyan V. Org. Lett. 2018; 20: 357
  • 39 Cheung KP. S, Sarkar S, Gevorgyan V. Chem. Rev. 2022; 122: 1543
  • 40 Ratushnyy M, Kvasovs N, Sarkar S, Gevorgyan V. Angew. Chem. Int. Ed. 2020; 59: 10316
  • 41 Kvasovs N, Gevorgyan V. Org. Lett. 2022; 24: 4176
  • 42 Roy S, Das SK, Chattopadhyay B. Angew. Chem. Int. Ed. 2018; 57: 2238
  • 43 Zhang Z, Gevorgyan V. Org. Lett. 2020; 22: 8500