Synlett 2022; 33(17): 1707-1715
DOI: 10.1055/s-0042-1751352
account

Synthesis of Nitrogen Heterocycles by a C–C Cross-Coupling/Cycloisomerization Strategy

Peter Langer
a   Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany   URL: http://www.langer.chemie.uni-rostock.de/
b   Leibniz-Institut für Katalyse an der Universität Rostock e. V., ­Albert-Einstein-Str. 29a, 18059 Rostock, Germany
› Author Affiliations


Abstract

The present article presents a personalized Account on the synthesis of nitrogen heterocycles by combination of regioselective Pd-catalyzed cross-coupling reactions of polyhalogenated heterocycles, i.e., Suzuki–Miyaura and Sonogashira reactions, with acid-mediated cycloisomerization reactions. In many cases, the products constitute new heterocyclic core structures and show interesting optical and electronic properties.

1 Introduction

2 Acridines

3 Phenathridines

4 Azapyrenes

5 Thienoquinolines

6 Pyrrolonaphthyridines

7 6-Aza-ullazines

8 Conclusions



Publication History

Received: 15 June 2022

Accepted after revision: 27 June 2022

Article published online:
02 August 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For reviews of regioselective palladium(0)-catalyzed cross-coupling reactions, see:
    • 1a Schröter S, Stock C, Bach T. Tetrahedron 2005; 61: 2245
    • 1b Schnürch M, Flasik R, Khan AF, Spina M, Mihovilovic MD, Stanetty P. Eur. J. Org. Chem. 2006; 3283
    • 1c Wang R, Manabe K. Synthesis 2009; 1405 For an excellent book related to domino reactions, see
    • 1d Tietze LF, Brasche G, Gericke KM. Domino Reactions in Organic Synthesis . Wiley-VCH; Weinheim: 2006. For a simple guide for the prediction of the siteselectivity of palladium catalyzed cross-coupling reactions based on 1H NMR data of the non-halogenated derivatives, see
    • 1e Handy ST, Zhang Y. Chem. Commun. 2006; 299
  • 2 Langer P. Synlett 2022; 33: 1029
  • 3 Langer P. 2022; 33 in press; DOI: DOI: 10.1055/s-0040-1719918.
  • 4 Langer P. 2022; 33 in press; DOI: DOI: 10.1055/s-0041-1738384.
  • 5 For an excellent review, see: Pankova AS, Shestakov AN, Kuznetsov MA. Russ. Chem. Rev. 2019; 88: 594
  • 6 Flader A, Ohlendorf L, Ammon E, Ehlers P, Villinger A, Langer P. Adv. Synth. Catal. 2019; 12: 2981
  • 7 Ammon E, Ohlendorf L, Villinger A, Ehlers P, Langer P. Eur. J. Org. Chem. 2020; 5867
  • 8 Janke S, Boldt S, Ghazargyan K, Ehlers P, Langer P. Eur. J. Org. Chem. 2019; 6177
  • 9 Molenda R, Boldt S, Villinger A, Ehlers P, Langer P. J. Org. Chem. 2020; 85: 12823
  • 10 Vardanyan A.; Boldt, S.; Villinger, A.; Ehlers, P.; Langer, P. J. Org. Chem. 2022 87, in press; https://doi.org/10.1021/acs.joc.1c02394.
  • 11 Ponce MB, Rodríguez ET, Flader A, Ehlers P, Langer P. Org. Biomol. Chem. 2020; 18: 6531
  • 12 Ponce MB, Mangione MI, Espinosa RH, Rodríguez ET, Ehlers P, Langer P. Eur. J. Org. Chem. 2022; in press; https://doi.org/ DOI: 10.1002/ejoc.202101306.
  • 13 Flader A, Parpart S, Ehlers P, Langer P. Org. Biomol. Chem. 2017; 15: 3216
  • 14 Boldt S, Parpart S, Villinger A, Ehlers P, Langer P. Angew. Chem. Int. Ed. 2017; 56: 4575