Synthesis 2022; 54(12): 2731-2748
DOI: 10.1055/s-0041-1737909
review

Recyclable Hypervalent Iodine Reagents in Modern Organic Synthesis

Rimi Rimi
a   Department of Chemistry, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
,
Sakshi Soni
a   Department of Chemistry, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
,
Bhawna Uttam
a   Department of Chemistry, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
,
Hideyasu China
b   Department of Medical Bioscience, Nagahama Institute of Bio-Science and Technology, 1266,Tamuracho Nagahama-shi, Shiga 526-0829, Japan
,
c   College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
,
Viktor V Zhdankin
d   Department of Chemistry and Biochemistry, University of Minnesota Duluth, 1038 University Drive 126 HCAMS, Duluth, Minnesota 55812, USA
,
Ravi Kumar
a   Department of Chemistry, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
› Author Affiliations
R.K. is thankful to the J.C. Bose University of Science and Technology, YMCA, Faridabad (Seed Grant R&D/SG/2020-21/166) and HSCSIT, Science­ and Technology Department, Haryana (HSCSIT/R&D/2021/ 2935). T.D. acknowledges support from the Japan Society for the Promotion of Science (JSPS), KAKENHI (Grant No. 19K05466), the Japan Science and Technology Agency (JST), CREST (Grant No. JPMJCR20R1), and the Ritsumeikan Global Innovation Research Organization (R-GIRO­) project. H.C. acknowledges support from JSPS via a Grant-in-Aid for Early-Career Scientists, KAKENHI (Grant No 20K15103). V.V.Z. is thankful to the National Science Foundation (CHE-1759798) for support of his research program on hypervalent iodine chemistry.


Abstract

Hypervalent iodine (HVI) reagents have gained much attention as versatile oxidants because of their low toxicity, mild reactivity, easy handling, and availability. Despite their unique reactivity and other advantageous properties, stoichiometric HVI reagents are associated with the disadvantage of generating non-recyclable iodoarenes as waste/co-products. To overcome these drawbacks, the syntheses and utilization of various recyclable hypervalent iodine reagents have been established in recent years. This review summarizes the development of various recyclable non-polymeric, polymer-supported, ionic-liquid-supported, and metal–organic framework (MOF)-hybridized HVI reagents.

1 Introduction

2 Polymer-Supported Hypervalent Iodine Reagents

2.1 Polymer-Supported Hypervalent Iodine(III) Reagents

2.2 Polymer-Supported Hypervalent Iodine(V) Reagents

3 Non-Polymeric Recyclable Hypervalent Iodine Reagents

3.1 Non-Polymeric Recyclable Hypervalent Iodine(III) Reagents

3.2 Recyclable Non-Polymeric Hypervalent Iodine(V) Reagents

3.3 Fluorous Hypervalent Iodine Reagents

4 Ionic-Liquid/Ion-Supported Hypervalent Iodine Reagents

5 Metal–Organic Framework (MOF)-Hybridized Hypervalent Iodine Reagents

6 Conclusion



Publication History

Received: 09 December 2021

Accepted after revision: 14 January 2022

Article published online:
23 March 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Kitamura T, Fujiwara Y. Org. Prep. Proced. Int. 1997; 29: 409
    • 1b Zhdankin VV. Hypervalent Iodine Chemistry: Preparation, Structure and Synthetic Applications of Polyvalent Iodine Compounds. John Wiley & Sons; New York: 2014
    • 1c Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
    • 1d The Chemistry of Hypervalent Halogen Compounds. In PATAI’S Chemistry of Functional Groups. Olofsson B, Marek I, Rappoport Z. John Wiley & Sons; Chichester: 2019
    • 1e Hypervalent Iodine Chemistry. In Topics in Current Chemistry, Vol. 373. Wirth T. Springer; Switzerland: 2016
    • 2a Merritt EA, Olofsson B. Synthesis 2011; 517
    • 2b Kandimalla SR, Parvathaneni SP, Sabitha G, Subba BV. Eur. J. Org. Chem. 2019; 1687
  • 3 Uyanik M, Ishihara K. Chem. Commun. 2009; 2086
  • 4 Tohma H, Maegawa T, Kita Y. ARKIVOC 2003; (vi): 62
  • 5 Zheng ZS, Zhang-Negrerie D, Du YF, Zhao K. Sci. China Chem. 2014; 57: 189
    • 7a Ochiai M, Miyamoto K. Eur. J. Org. Chem. 2008; 4229
    • 7b Yusubov MS, Zhdankin VV. Mendeleev Commun. 2010; 20: 185
    • 7c Yusubov MS, Zhdankin VV. Curr. Org. Synth. 2012; 9: 247
  • 8 Okawara M, Mizuta K. Kogyo Kagaku Zasshi 1961; 64: 232
  • 9 Wang GP, Chen ZC. Synth. Commun. 1999; 29: 2859
  • 10 Varma RS, Dahiya R, Saini RK. Tetrahedron Lett. 1997; 38: 7029
  • 11 Ley SV, Thomas AW, Finch H. J. Chem. Soc., Perkin Trans. 1 1999; 669
  • 12 Tohma H, Morioka H, Takizawa S, Arisawa M, Kita Y. Tetrahedron 2001; 57: 345
  • 13 Abe S, Sakuratani K, Togo H. J. Org. Chem. 2001; 66: 6174
  • 14 Huang X, Zhang Q. Tetrahedron Lett. 2001; 42: 6373
  • 15 Ficht S, Mülbaier M, Giannis A. Tetrahedron 2001; 57: 4863
  • 16 Tohma H, Maegawa T, Kita Y. Synlett 2003; 723
  • 17 Brenelli EC. S, Brenelli JA, Pinto RC. L. Tetrahedron Lett. 2005; 7: 833
  • 18 Teduka T, Togo H. Synlett 2005; 315
  • 19 Hossain M, Kitamura T. Synthesis 2006; 1253
  • 20 Kalberer E, Whitfield S, Sanford M. J. Mol. Catal. A: Chem. 2006; 251: 108
  • 21 Wan D.-B, Chen J.-M. J. Chem. Res. 2006; 32
  • 22 Shang Y, But TY. S, Togo H, Toy PH. Synlett 2007; 67
  • 23 Li F.-Q, Zeng X.-M, Chen J.-M. J. Chem. Res. 2007; 619
  • 24 Kumar S, Kumar D. Asian J. Chem. 2008; 20: 4308
  • 25 Kumar A, Maurya R, Ahmad P. J. Comb. Chem. 2009; 11: 198
  • 26 Chen JM, Zeng XM, Zhdankin VV. Synlett 2010; 2771
  • 27 Chen J.-M, Zeng X.-M, Middleton K, Zhdankin VV. Tetrahedron Lett. 2011; 52: 1952
  • 28 Chen J.-M, Zeng X.-M, Middleton K, Yusubov MS, Zhdankin VV. Synlett 2011; 1613
  • 29 Zeng XM, Chen JM, Middleton K, Zhdankin VV. Tetrahedron Lett. 2011; 52: 5652
  • 30 Zhu C, Wei Y. Adv. Synth. Catal. 2012; 354: 313
  • 31 Nambu H, Shimokawa I, Fujiwara T, Yakura T. Asian J. Org. Chem. 2016; 5: 486
  • 32 Çatir M. Turk. J. Chem. 2017; 41: 467
  • 33 Ghanbari N, Ghafuri H, Zang DH. ChemistrySelect 2018; 3: 3394
  • 34 Shahamat Z, Nemati F, Elhampour A. React. Funct. Polym. 2020; 146: 104415
  • 35 Macara J, Poeira DL, Coelho JA. S, Marques MM. B. Synlett 2021; 32: 1730
    • 36a Kirschning A, Monenschein H, Schmeck C. Angew. Chem. Int. Ed. 1999; 38: 2594
    • 36b Kirschning A, Jesberger M, Monenschein H. Tetrahedron Lett. 1999; 40: 8999
    • 36c Monenschein H, Sourkouni-Argirusi G, Schubothe KM, O’Hare T, Kirschning A. Org. Lett. 1999; 1: 2101
    • 36d Sourkouni-Argirusi G, Kirschning A. Org. Lett. 2000; 2: 3781
    • 36e Kirschning A, Kunst E, Ries M, Rose L, Schoenberger A, Wartchow R. ARKIVOC 2003; 145
    • 36f Kösel T, Schulz G, Dräger G, Kirschning A. Angew. Chem. Int. Ed. 2020; 59: 12376
    • 36g Kirschning A, George V. SynOpen 2021; 5: 104
  • 37 Mülbaier M, Giannis A. Angew. Chem. Int. Ed. 2001; 40: 4393
  • 38 Sorg G, Mengal A, Jung G, Rademann J. Angew. Chem. Int. Ed. 2001; 40: 4395
  • 39 Reed N, Delgado M, Hereford K, Clapham B, Janda K. Bioorg. Med. Chem. Lett. 2002; 12: 2047
  • 40 Lei Z, Denecker C, Jegasothy S, Sherrington DC, Slater NK. H, Sutherland AJ. Tetrahedron Lett. 2003; 44: 1635
  • 41 Chung W, Kim D, Lee Y. Tetrahedron Lett. 2003; 44: 9251
  • 42 Sorg G, Thern B, Mader O, Rademann J, Jung G. J. Pept. Sci. 2005; 11: 142
  • 43 Chung W, Kim D, Lee Y. Synlett 2005; 2175
  • 44 Lecarpentier P, Crosignani S, Linclau B. Mol. Diversity 2005; 9: 341
  • 45 Ladziata U, Willging J, Zhdankin VV. Org. Lett. 2006; 8: 167
  • 46 Lei Q, Ma H, Zhang Z, Yang Y. React. Funct. Polym. 2006; 66: 840
  • 47 Jang H, Chung W, Lee Y. Tetrahedron Lett. 2007; 48: 3731
  • 48 Bromberg L, Zhang H, Hatton T. Chem. Mater. 2008; 20: 2001
  • 49 Bernini R, Minicone E, Cristane F, Barontini M, Fabrizi G. Tetrahedron Lett. 2009; 50: 1307
  • 50 Jang H.-S, Kim Y.-H, Kim Y.-O, Lee S.-M, Kim JW, Chung W.-J, Lee Y.-S. J. Ind. Eng. Chem. 2014; 20: 29
  • 51 Samunual P, Bergbreiter DE. Tetrahedron Lett. 2016; 57: 3272
  • 52 Ballaschk F, Kirsch S. Green Chem. 2019; 21: 5896
  • 53 Zhang M, Zhai Y, Ru S, Zang D, Han S, Yu H, Wei Y. Chem. Commun. 2018; 54: 10164
  • 54 Tohma H, Maruyama A, Maeda A, Maegawa T, Dohi T, Shiro M, Morita T, Kita Y. Angew. Chem. Int. Ed. 2004; 43: 3595
  • 55 Dohi T, Maruyama A, Yoshimura M, Morimoto K, Tohma H, Shiro M, Kita Y. Chem. Commun. 2005; 17: 2205
  • 56 Yusubov SM, Drygunova LA, Zhdankin VV. Synthesis 2004; 2289
  • 57 Dohi T, Morimoto K, Takenaga N, Maruyama A, Kita Y. Chem. Pharm. Bull. 2006; 54: 1608
  • 58 Moroda A, Togo H. Tetrahedron 2006; 62: 12408
  • 59 Eisenberger P, Gischig S, Togni A. Chem. Eur. J. 2006; 12: 2579
  • 60 Kirschning A, Yusubov MS, Yusubova RY, Chi K.-W, Park JY. Beilstein J. Org. Chem. 2007; 3: 19
  • 61 Yusubov MS, Yusubova RY, Kirschning A, Park JY, Chi K.-W. Tetrahedron Lett. 2008; 49: 1506
  • 62 Yusubov MS, Yusubova RY, Funk TV, Chi K.-W, Kirschning A, Zhdankin VV. Synthesis 2010; 3681
  • 63 Yusubov MS, Funk TV, Yusubova RY, Zholobova G, Kirschning A, Park JY, Chi K.-W. Synth. Commun. 2009; 39: 3772
  • 64 Yusubov MS, Gilmkhanova MP, Zhdankin VV, Kirschning A. Synlett 2007; 563
  • 65 Yusubov MS, Funk TV, Chi K.-W, Cha EH, Kim GH, Kirschning A, Zhdankin VV. J. Org. Chem. 2008; 73: 295
  • 66 Dohi T, Morimotto K, Ogawa C, Fujioka H, Kita Y. Chem. Pharm. Bull. 2009; 57: 710
  • 67 Qiang X, Zhang C. Synthesis 2009; 1163
  • 68 Zeng X.-M, Chen J.-M, Yoshimura A, Middleton K, Zhdankin VV. RSC Adv. 2011; 1: 973
    • 69a Dohi T, Fukushima K.-I, Kamitabaka T, Morimoto K, Takenaga N, Kita Y. Green Chem. 2012; 14: 1493
    • 69b Dohi T, Kamitanaka T, Mochizuki E, Ito M, Kita Y. Chem. Pharm. Bull. 2012; 60: 1442
  • 70 Tian J, Gao W.-C, Zhou D.-M, Zhang C. Org. Lett. 2012; 14: 3020
  • 71 Thorat PB, Bhong BY, Karade NN. Synlett 2013; 24: 2061
  • 72 Thorat PB, Shelke AM. J. Adv. Sci. Res. 2020; 11: 284
  • 73 Thorat PB, Bhong BY, Shelke AV, Karade NN. Tetrahedron Lett. 2014; 55: 3332
  • 74 Morimoto K, Ogawa R, Koseki D, Takahashi Y, Dohi T, Kita Y. Chem. Pharm. Bull. 2015; 63: 819
  • 75 Morimoto K, Kamitanaka T, Dohi T, Kita Y. Heterocycles 2018; 97: 632
  • 76 Yoshimura A, Nguyen KC, Klasen SC, Saito A, Nemykin VN, Zhdankin VV. Chem. Commun. 2015; 51: 7835
  • 77 Yoshimura A, Zhdankin VV. ARKIVOC 2017; (iii): 32
  • 78 Yoshimura A, Klasen SC, Shea MY, Nguyen KC, Rohde GT, Saito A, Postnikov PS, Yusubov MS, Nemykin VM, Zhdankin VV. Chem. Eur. J. 2017; 23: 691
  • 79 Zhang C, Liu S.-S, Sun B, Tian J. Org. Lett. 2015; 17: 4106
  • 80 Liu D, Guo Y.-L, Qu J, Zhang C. Beilstein J. Org. Chem. 2018; 14: 1112
  • 81 Yoshimura A, Nguyen KC, Nemylin VN, Zhdankin VV. ARKIVOC 2018; (ii): 40
  • 82 Akula R, Galligan M, Ibrahim H. Chem. Commun. 2009; 6991
  • 83 Egami H, Yoneda T, Uku M, Ide T, Kawato Y, Hamashima Y. J. Org. Chem. 2016; 81: 4020
  • 84 Wang M, Zhang Y, Wang T, Chao W, Xue D, Xio JJ. Org. Lett. 2016; 18: 1976
  • 85 Parvathaneni SP, Perumgani PC. Asian J. Org. Chem. 2018; 7: 324
    • 86a Sawamura T, Kuribayashi S, Inagi S, Fuchigami T. Adv. Synth. Catal. 2010; 352: 2757
    • 86b Sawamura T, Inagi S, Fuchigami T. Org. Lett. 2010; 12: 644
    • 86c Broese T, Francke R. Org. Lett. 2016; 18: 5896
    • 86d Koleda O, Broese T, Noetzel J, Roemelt M, Suna E, Francke R. J. Org. Chem. 2017; 82: 11669
  • 87 Elsherbini M, Wirth T. Chem. Eur. J. 2018; 24: 1
  • 88 Dohi T, Hayashi T, Ueda S, Shoji T, Komiyama K, Takeuchi H, Kita Y. Tetrahedron 2019; 75: 3617
  • 89 Zhang G, Tan H, Chen W, Shen HC, Lu Y, Zheng C, Xu H. ChemSusChem 2020; 13: 1
  • 90 Thottumkara AP, Vinod TK. Tetrahedron Lett. 2002; 43: 569
  • 91 Yadav JS, Reddy BV. S, Basak AK, Narsaiah V. Tetrahedron 2004; 60: 2131
  • 92 More JD, Finney NS. Org. Lett. 2006; 4: 3001
  • 93 Yoshimura A, Banek CT, Yusubov MS, Nemykin VM, Zhdankin VV. J. Org. Chem. 2011; 76: 3812
  • 94 Yusubov MS, Yusubova RY, Nemykin VN, Maskaev AV, Geraskina MR, Kirschning A, Zhdankin VV. Eur. J. Org. Chem. 2012; 30: 5935
  • 95 Mironova IA, Yusubova RY, Kukurina OS, Yusubov MS, Zhdankin VV. Curr. Org. Synth. 2016; 13: 629
  • 96 Singh K, Kaur A, Mithu VS, Sharma S. J. Org. Chem. 2017; 82: 5285
  • 97 Cui L.-Q, Dong Z.-L, Liu K, Zhang C. Org. Lett. 2011; 13: 6488
  • 98 Duan Y.-N, Cui L.-Q, Zuo L.-H, Zhang C. Chem. Eur. J. 2015; 21: 13052
  • 99 Duan Y.-N, Zhang Z, Zhang C. Org. Lett. 2016; 18: 6176
  • 100 Shen H.-J, Hu Z.-N, Zhang C. J. Org. Chem. 2021; 86 in press; DOI: DOI: 10.1021/acs.joc.1c00596.
  • 101 Tesevic V, Gladysz JA. J. Org. Chem. 2006; 71: 7433
  • 102 Rocaboy C, Gladysz JA. Chem. Eur. J. 2003; 9: 88
  • 103 Tesevic V, Gladysz JA. Green Chem. 2005; 7: 833
  • 104 Podgorsek A, Jurisch M, Stavber S, Zupan M, Iskra J, Gladysz JA. J. Org. Chem. 2009; 74: 3133
  • 105 Miura T, Nakashima K, Tada N, Itoh A. Chem. Commun. 2011; 47: 1875
  • 106 Handy ST, Okello M. J. Org. Chem. 2005; 70: 2874
  • 107 Qian W, Jin E, Bao W, Zhang Y. Angew. Chem. Int. Ed. 2005; 44: 952
  • 108 Qian W, Pei L. Synlett 2006; 709
  • 109 Qian W, Jin E, Bao W, Zhang Y. Tetrahedron 2006; 62: 556
  • 110 Roy M.-N, Poupon J.-C, Charette AB. J. Org. Chem. 2009; 74: 741
  • 111 Su F, Zhang J, Jin G, Qiu T, Zhao D, Jia H. J. Chem. Res. 2009; 741
  • 112 Kawano Y, Togo H. Tetrahedron 2009; 65: 6251
  • 113 Ishiwata Y, Togo H. Tetrahedron Lett. 2009; 50: 5354
  • 114 Zhang J, Zhao D, Wang Y, Kuang H, Jia H. J. Chem. Res. 2011; 35: 333
  • 115 Zhu C, Yoshimura A, Wei Y, Nemykin NV, Zhdankin VV. Tetrahedron Lett. 2012; 53: 1438
  • 116 Iinuma M, Moriyama K, Togo H. Tetrahedron 2013; 69: 2961
  • 117 Xie Y, Pan H. Phosphorus, Sulfur Silicon Relat. Elem. 2014; 189: 98
  • 118 Muthyala MK, Choudhary S, Kumar A. RSC Adv. 2014; 4: 14297
  • 119 Muthyala MK, Choudhary S, Pandey K, Shelke GM, Jha M, Kumar A. Eur. J. Org. Chem. 2014; 18: 2365
  • 120 Li X, Huang Y, Gan B, Mi Z, Xie Y. J. Chem. Res. 2015; 39: 631
  • 121 Tahmouresilerd B, Larson P, Unruh D, Cozzolino A. Catal. Sci. Technol. 2018; 8: 4349
  • 122 Tahmouresilerd B, Moody M, Agogo L, Cozzolino AF. Dalton Trans. 2019; 48: 6445
  • 123 Cardenal AD, Maity A, Gao W.-Y, Ashirov R, Hyun S.-M, Powers DC. Inorg. Chem. 2019; 58: 10543
  • 124 Bryant MR, Richardson C. Dalton Trans. 2020; 49: 5167