Synlett 2022; 33(10): 927-938
DOI: 10.1055/s-0040-1719898
account

Palladium-Catalyzed Intermolecular Carbonylation-Based Difunctionalization of Alkenes

Bing Tian
a   State Key Laboratory of Organometallic Chemistry, and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. of China
,
Pinhong Chen
a   State Key Laboratory of Organometallic Chemistry, and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. of China
,
Guosheng Liu
a   State Key Laboratory of Organometallic Chemistry, and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. of China
b   Chang-Kung Chuang Institute, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. of China
› Author Affiliations
We are grateful for financial support from the National Key Research and Development Program of China (2021YFA1500100), the National Natural Science Foundation of China (21971255, 21821002, 21790330, and 91956202), the Science and Technology Commission of Shanghai Municipality (19590750400, 21520780100, and 20JC1417000), the Key Research Program of Frontier Science ( QYZDJSSWSLH055), and the International Partnership Program of the Chinese Academy of Sciences (121731KYSB20190016).


Abstract

The palladium(II)-catalyzed carbonylation of alkenes presents one of most efficient methods for the synthesis of alkyl-substituted carbonyls and has received much attention. In this Account, we summarize our recent studies on the palladium-catalyzed intermolecular carbonylation-based 1,2-difunctionalization of alkenes, in which two strategies were involved: (1) a cooperative strategy involves the sequential iodine(III)-mediated alkene activation and palladium-catalyzed carbonylation, leading to the intermolecular β-oxy-, fluoro-, and azidocarbonylation of alkenes; (2) the classic strategy initiated by intermolecular nucleopalladation and carbonylation, including the asymmetric oxycarbonylation of alkenes. These methods provide a series of efficient approaches to synthesize β-functionalized aliphatic carboxylic derivatives.

1 Introduction

2 A Cooperative Strategy Involving Iodine(III)-Mediated Alkene Activation and Palladium-Catalyzed Carbonylation

2.1 Intermolecular Oxycarbonylation of Alkenes

2.2 Intermolecular Fluorocarbonylation of Alkenes

2.3 Intermolecular Azidocarbonylation of Alkenes

3 Intermolecular Aminocarbonylation of Alkenes Initiated by Aminopalladation

4 Intermolecular Arylcarbonylation of Alkenes Initiated by Arylpalladation

5 Intermolecular Enantioselective Oxycarbonylation of Alkenes Initiated by Oxypalladation

6 Conclusion



Publication History

Received: 31 December 2021

Accepted after revision: 25 January 2022

Article published online:
15 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected reviews, see:
    • 1a Chen P, Liu G. Eur. J. Org. Chem. 2015; 4295
    • 1b Li X, Chen P, Liu G. Beilstein J. Org. Chem. 2018; 14: 1813
    • 1c Dhungana RK, Kc S, Basnet P, Giri R. Chem. Rec. 2018; 18: 1314
    • 1d Li Z.-L, Fang G.-C, Gu Q.-S, Liu X.-Y. Chem. Soc. Rev. 2020; 49: 32
    • 3a Tsuji J, Morikawa M, Kiji J. Tetrahedron Lett. 1963; 4: 1061
    • 3b Tsuji J, Morikawa M, Kiji J. J. Am. Chem. Soc. 1964; 86: 4851
  • 4 Fenton DM. US 3530168 1970
  • 5 Medema D, Van Helden R, Kohll CF. Inorg. Chim. Acta 1969; 3: 255

    • For selected reviews, see:
    • 6a Wu X.-F, Neumann H, Beller M. ChemSusChem 2013; 6: 229
    • 6b Wu X.-F, Neumann H, Beller M. Chem. Rev. 2013; 113: PR1
    • 6c Zhu C, Liu J, Li M.-B, Bäckvall J.-E. Chem. Soc. Rev. 2020; 49: 341
    • 6d Zhang S, Neumann H, Beller M. Chem. Soc. Rev. 2020; 49: 3187

      For selected examples, see:
    • 7a Tamaru Y, Kobayashi T, Kawamura S, Ochiai H, Yoshida Z. Tetrahedron Lett. 1985; 26: 4479
    • 7b Tamaru Y, Yoshida Z. J. Organomet. Chem. 1987; 334: 213
    • 7c Tamaru Y, Hojo M, Higashimura H, Yoshida Z. J. Am. Chem. Soc. 1988; 110: 3994
    • 7d Semmelhack MF, Bodurow C. J. Am. Chem. Soc. 1984; 106: 1496
    • 7e Tietze LF, Zinngrebe J, Spiegl DA, Stecker F. Heterocycles 2007; 74: 473
    • 7f Tietze LF, Spiegl DA, Stecker F, Major J, Raith C, Große C. Chem. Eur. J. 2008; 14: 8956
    • 7g Tietze LF, Jackenkroll S, Hierold J, Ma L, Waldecker B. Chem. Eur. J. 2014; 20: 8628
    • 8a James DE, Hines LF, Stille JK. J. Am. Chem. Soc. 1976; 98: 1806
    • 8b James DE, Stille JK. J. Am. Chem. Soc. 1976; 98: 1810
    • 8c James DE, Stille JK. J. Org. Chem. 1976; 41: 1504
  • 9 Smidt J, Hafner W, Jira R, Sedlmeier J, Sieber R, Rüttinger R, Kojer H. Angew. Chem. 1959; 71: 176

    • For selected reviews, see:
    • 10a Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299, For selected examples, see
    • 10b Souto JA, Zian D, Muñiz K. J. Am. Chem. Soc. 2012; 134: 7242
    • 10c Martínez C, Muñiz K. Angew. Chem. Int. Ed. 2015; 54: 8287
    • 10d Haubenreisser S, Wöste TH, Martínez C, Ishihara K, Muñiz K. Angew. Chem. Int. Ed. 2016; 55: 413
    • 11a Canty AJ. Acc. Chem. Res. 1992; 25: 83
    • 11b Li M, Yu F, Qi X, Chen P, Liu G. Angew. Chem. Int. Ed. 2016; 55: 13843
    • 12a Weiner B, Baeza A, Jerphagnon T, Feringa BL. J. Am. Chem. Soc. 2009; 131: 9473
    • 12b Dong J.-J, Harvey EC, Fañanás-Mastral M, Browne WR, Feringa BL. J. Am. Chem. Soc. 2014; 136: 17302
    • 14a Carnell AJ, Hale I, Denis S, Wanders RJ. A, Isaacs WB, Wilson BA, Ferdinandusse S. J. Med. Chem. 2007; 50: 2700
    • 14b Devadas B, Kishore NS, Adams SP, Gordon JI. Bioorg. Med. Chem. Lett. 1993; 3: 779
    • 14c Liang J, Abbema A, Balazs M, Barrett K, Berezhkovsky L, Blair W, Chang C, Delarosa D, DeVoss J, Driscoll J, Eigenbrot C, Ghilardi N, Gibbons P, Halladay J, Johnson A, Kohli PB, Lai Y, Liu Y, Lyssikatos J, Mantik P, Menghrajani K, Murray J, Peng I, Sambrone A, Shia S, Shin Y, Smith J, Sohn S, Tsui V, Ultsch M, Wu LC, Xiao Y, Yang W, Young J, Zhang B, Zhu B.-Y, Magnuson S. J. Med. Chem. 2013; 56: 4521
  • 15 Qi X, Yu F, Chen P, Liu G. Angew. Chem. Int. Ed. 2017; 56: 12692
  • 16 Li M, Yu F, Chen P, Liu G. J. Org. Chem. 2017; 82: 11682
  • 17 Charpentier J, Früh N, Togni A. Chem. Rev. 2015; 115: 650

    • For selected reviews, see:
    • 18a Müller TE, Beller M. Chem. Rev. 1998; 98: 675
    • 18b Beller M, Seayad J, Tillack A, Jiao H. Angew. Chem. Int. Ed. 2004; 43: 3368

      For the pioneering intermolecular amination of alkenes with stoichiometric palladium catalyst, see:
    • 19a Båckvall J.-E. Acc. Chem. Res. 1983; 16: 335, For the catalytic intermolecular amination of alkenes, see
    • 19b Timokhin VI, Anastasi NR, Stahl SS. J. Am. Chem. Soc. 2003; 125: 12996
    • 19c Timokhin VI, Stahl SS. J. Am. Chem. Soc. 2005; 127: 17888
    • 19d Brice JL, Harang JE, Timokhin VI, Anastasi NR, Stahl SS. J. Am. Chem. Soc. 2005; 127: 2868
    • 19e Rogers MM, Kotov V, Chatwichien J, Stahl SS. Org. Lett. 2007; 9: 4331

      For selected reviews, see:
    • 20a Wu X.-F, Fang X, Wu L, Jackstell R, Neumann H, Beller M. Acc. Chem. Res. 2014; 47: 1041
    • 20b Tamaru Y, Kimura M. Synlett 1997; 749 For selected examples, see
    • 20c Hegedus LS, Allen GF, Olsen DJ. J. Am. Chem. Soc. 1980; 102: 3583
    • 20d Harayama H, Abe A, Sakado T, Kimura M, Fugami K, Tanaka S, Tamaru Y. J. Org. Chem. 1997; 62: 2113
    • 20e Shinohara T, Arai MA, Wakita K, Arai T, Sasai H. Tetrahedron Lett. 2003; 44: 711
    • 20f Tsujihara T, Shinohara T, Takenaka K, Takizawa S, Onitsuka K, Hantanaka M, Sasai H. J. Org. Chem. 2009; 74: 9274
    • 21a Pilarski LT, Selander N, Böse D, Szabó KJ. Org. Lett. 2009; 11: 5518
    • 21b Alam R, Pilarski LT, Pershagen E, Szabó KJ. J. Am. Chem. Soc. 2012; 134: 8778
    • 21c Check CT, Henderson WH, Wray BC, Vanden Eynden MJ, Stambuli JP. J. Am. Chem. Soc. 2011; 133: 18503
    • 21d Yin G, Wu Y, Liu G. J. Am. Chem. Soc. 2010; 132: 11978
  • 22 Bigi MA, White MC. J. Am. Chem. Soc. 2013; 135: 7831
  • 23 Cheng J, Qi X, Li M, Chen P, Liu G. J. Am. Chem. Soc. 2015; 137: 2480

    • For the cis-aminopalladation of alkenes, see:
    • 24a Liu G, Stahl SS. J. Am. Chem. Soc. 2007; 129: 6328
    • 24b Bertrand MB, Neukom JD, Wolfe JP. J. Org. Chem. 2008; 73: 8851
    • 24c Muñiz K, Hövelmann CH, Streuff J. J. Am. Chem. Soc. 2008; 130: 763
    • 24d Hanley PS, Markovic D, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 6302
    • 24e White PB, Stahl SS. J. Am. Chem. Soc. 2011; 133: 18594
    • 24f Zhu H, Chen P, Liu G. J. Am. Chem. Soc. 2014; 136: 1766

      For selected examples, see:
    • 25a Phipps RJ, Mcmurray L, Ritter S, Duong HA, Gaunt MJ. J. Am. Chem. Soc. 2012; 134: 10773
    • 25b Zhang F, Das S, Walkinshaw AJ, Casitas A, Taylor M, Suero MG, Gaunt MJ. J. Am. Chem. Soc. 2014; 136: 8851
    • 25c Lukamoto DH, Gaunt MJ. J. Am. Chem. Soc. 2017; 139: 9160
  • 26 Li X, Chen P, Liu G. Angew. Chem. Int. Ed. 2018; 57: 15871
    • 27a Albéniz AC, Espinet P, López-Fernández R, Sen A. J. Am. Chem. Soc. 2002; 124: 11278
    • 27b Kirchberg S, Fröhlich R, Studer A. Angew. Chem. Int. Ed. 2009; 48: 4235
    • 27c He Z, Krichberg S, Fröhlich R, Studer A. Angew. Chem. Int. Ed. 2012; 51: 3699
  • 28 Altomonte S, Telu S, Lu S, Pike VW. J. Org. Chem. 2017; 82: 11925
  • 29 Cabri W, Candiani I. Acc. Chem. Res. 1995; 28: 2
  • 30 Ruan J, Xiao J. Acc. Chem. Res. 2010; 44: 614
  • 31 Peng J.-B, Liu X.-L, Li L, Wu X.-F. Sci. China Chem. 2022; in press; DOI DOI: 10.1007/s11426-021-1165-6.
    • 32a Pisano C, Nefkens SC. A, Consiglio G. Organometallics 1992; 11: 1975
    • 32b Nefkens SC. A, Sperrle M, Consiglio G. Angew. Chem. Int. Ed. 1993; 32: 1719
    • 32c Ukaji Y, Miyamoto M, Mikuni M, Takeuchi S, Inomata K. Bull. Chem. Soc. Jpn. 1996; 69: 735
    • 32d Wang L, Kwok W, Wu J, Guo R, Au-Yeung TT. L, Zhou Z, Chan AS. C, Chan KS. J. Mol. Catal. A: Chem. 2003; 196: 171
    • 32e Liang B, Liu J, Gao YX, Wongkhan K, Shu DX, Lan Y, Li A, Batsanov AS, Howard JA. H, Marder TB, Chen JH, Yang Z. Organometallics 2007; 26: 4756
    • 32f Gao X.-Y, Chang L, Shi H, Liang B, Wongkhan K, Chaiyaveij D, Batsanov AS, Marder TB, Li CC, Yang Z, Huang Y. Adv. Synth. Catal. 2010; 352: 1955
    • 32g Carfagna C, Gatti G, Mosca L, Natanti P, Paoli P, Rossi P, Gabriele B, Salerno G. Dalton Trans. 2011; 40: 6792
  • 33 Qi X, Chen C, Hou C, Fu L, Chen P, Liu G. J. Am. Chem. Soc. 2018; 140: 7415
  • 34 Chen C, Pflüger PM, Chen P, Liu G. Angew. Chem. Int. Ed. 2019; 58: 2392
  • 35 Hou C, Chen P, Liu G. Angew. Chem. Int. Ed. 2020; 59: 2735
  • 36 Li X, Qi X, Hou C, Chen P, Liu G. Angew. Chem. Int. Ed. 2020; 59: 17239
  • 37 Tian B, Chen P, Leng X, Liu G. Nat. Catal. 2021; 4: 172
  • 38 Tian B, Chen P, Liu G. Angew. Chem. Int. Ed. 2021; 60: 14881
    • 39a Werner EW, Mei T-S, Burckle AJ, Sigman MS. Science 2012; 338: 1455
    • 39b Zhang C, Santiago CB, Crawford JM, Sigman MS. J. Am. Chem. Soc. 2015; 137: 15668
    • 39c Patel HH, Sigman MS. J. Am. Chem. Soc. 2016; 138: 14226
    • 39d Race NJ, Schwalm CS, Nakamuro T, Sigman MS. J. Am. Chem. Soc. 2016; 138: 15881
    • 39e Chen Z.-M, Nervig CS, DeLuca RJ, Sigman MS. Angew. Chem. Int. Ed. 2017; 56: 6651
    • 39f Bahamonde A, Al Rifaie B, Martín-Heras V, Allen JR, Sigman MS. J. Am. Chem. Soc. 2019; 141: 8708
    • 39g Allen JR, Bahamonde A, Furukawa Y, Sigman MS. J. Am. Chem. Soc. 2019; 141: 8670