Appl Clin Inform 2020; 11(02): 342-349
DOI: 10.1055/s-0040-1709708
Research Article
Georg Thieme Verlag KG Stuttgart · New York

Mapping the Entire Record—An Alternative Approach to Data Access from Medical Logic Modules

Stefan Kraus
1   Chair of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
,
Dennis Toddenroth
1   Chair of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
,
Martin Staudigel
2   Medical Centre for Information and Communication Technology, Universitätsklinikum Erlangen, Erlangen, Germany
,
Wolfgang Rödle
1   Chair of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
,
Philipp Unberath
1   Chair of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
,
Lena Griebel
1   Chair of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
,
Hans-Ulrich Prokosch
1   Chair of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
,
Sebastian Mate
2   Medical Centre for Information and Communication Technology, Universitätsklinikum Erlangen, Erlangen, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

27. November 2019

13. März 2020

Publikationsdatum:
13. Mai 2020 (online)

Abstract

Objectives This study aimed to describe an alternative approach for accessing electronic medical records (EMRs) from clinical decision support (CDS) functions based on Arden Syntax Medical Logic Modules, which can be paraphrased as “map the entire record.”

Methods Based on an experimental Arden Syntax processor, we implemented a method to transform patient data from a commercial patient data management system (PDMS) to tree-structured documents termed CDS EMRs. They are encoded in a specific XML format that can be directly transformed to Arden Syntax data types by a mapper natively integrated into the processor. The internal structure of a CDS EMR reflects the tabbed view of an EMR in the graphical user interface of the PDMS.

Results The study resulted in an architecture that provides CDS EMRs in the form of a network service. The approach enables uniform data access from all Medical Logic Modules and requires no mapping parameters except a case number. Measurements within a CDS EMR can be addressed with straightforward path expressions. The approach is in routine use at a German university hospital for more than 2 years.

Conclusion This practical approach facilitates the use of CDS functions in the clinical routine at our local hospital. It is transferrable to standard-compliant Arden Syntax processors with moderate effort. Its comprehensibility can also facilitate teaching and development. Moreover, it may lower the entry barrier for the application of the Arden Syntax standard and could therefore promote its dissemination.

Note

To make our approach more understandable for the reader, the [Supplementary Material] (available in the online version) provides a tutorial on PDML with commented examples, including a CDS EMR.


Protection of Human and Animal Subjects

Ethical approval was not required.


Supplementary Material

 
  • References

  • 1 Hripcsak G, Ludemann P, Pryor TA, Wigertz OB, Clayton PD. Rationale for the Arden Syntax. Comput Biomed Res 1994; 27 (04) 291-324
  • 2 Jenders RA, Adlassnig K-P, Fehre K, Haug P. Evolution of the Arden syntax: key technical issues from the standards development organization perspective. Artif Intell Med 2018; 92: 10-14
  • 3 Adlassnig K-P, Haug P, Jenders RA. Arden Syntax: then, now, and in the future. Artif Intell Med 2018; 92: 1-6
  • 4 Samwald M, Fehre K, de Bruin J, Adlassnig K-P. The Arden Syntax standard for clinical decision support: experiences and directions. J Biomed Inform 2012; 45 (04) 711-718
  • 5 Hripcsak G. Writing Arden Syntax Medical Logic Modules. Comput Biol Med 1994; 24 (05) 331-363
  • 6 Health Level Seven International. The Arden Syntax for Medical Logic Systems, Version 2.8. 2012. Available at: https://www.hl7.org/implement/standards/product_brief.cfm?product_id=268 . Accessed March 30, 2020
  • 7 Castellanos I, Schüttler J, Prokosch H-U, Bürkle T. Does introduction of a Patient Data Management System (PDMS) improve the financial situation of an intensive care unit?. BMC Med Inform Decis Mak 2013; 13: 107
  • 8 Castellanos I, Ganslandt T, Prokosch HU, Schüttler J, Bürkle T. [Implementation of a patient data management system. Effects on intensive care documentation] (in German). Anaesthesist 2013; 62 (11) 887-890
  • 9 Bürkle T, Castellanos I, Tech H, Prokosch H-U. Implementation of a patient data management system - an evaluation study of workflow alterations. Stud Health Technol Inform 2010; 160 (Pt 2): 1256-1260
  • 10 Castellanos I, Martin M, Kraus S. , et al. Effects of staff training and electronic event monitoring on long-term adherence to lung-protective ventilation recommendations. J Crit Care 2018; 43: 13-20
  • 11 Castellanos I, Kraus S, Toddenroth D, Prokosch H-U, Bürkle T. Using Arden syntax medical logic modules to reduce overutilization of laboratory tests for detection of bacterial infections-success or failure?. Artif Intell Med 2018; 92: 43-50
  • 12 Kraus S, Castellanos I, Toddenroth D, Prokosch H-U, Bürkle T. Integrating Arden-Syntax-based clinical decision support with extended presentation formats into a commercial patient data management system. J Clin Monit Comput 2014; 28 (05) 465-473
  • 13 Johansson B, Shahsavar N, Ahlfeldt H, Wigertz O. Database and knowledge base integration--a data mapping method for Arden Syntax knowledge modules. Methods Inf Med 1996; 35 (4,5): 302-308
  • 14 Lamigueiro OP. Displaying Time Series, Spatial, and Space-Time Data with R. 2nd ed. Boca Raton, FL: CRC Press; 2018
  • 15 Dinu V, Nadkarni P. Guidelines for the effective use of entity-attribute-value modeling for biomedical databases. Int J Med Inform 2007; 76 (11-12): 769-779
  • 16 Kraus S. Generalizing the Arden Syntax to a common clinical application language. Stud Health Technol Inform 2018; 247: 675-679
  • 17 Kraus S, Rosenbauer M, Schröder L, Bürkle T, Adlassnig K-P, Toddenroth D. A detailed analysis of the Arden Syntax expression grammar. J Biomed Inform 2018; 83: 196-203
  • 18 Kraus S, Toddenroth D, Unberath P, Prokosch H-U, Hueske-Kraus D. An extension of the Arden Syntax to facilitate clinical document generation. Stud Health Technol Inform 2019; 259: 65-70
  • 19 Kraus S, Prokosch H-U. Complementing medical records with precalculated data items to facilitate decision support and phenotyping. Stud Health Technol Inform 2019; 258: 36-40
  • 20 Hripcsak G, Johnson SB, Clayton PD. Desperately seeking data: knowledge base-database links. Proc Annu Symp Comput Appl Med Care 1993; 639-643
  • 21 Sujansky W, Altman R. Towards a standard query model for sharing decision-support applications. Proc Annu Symp Comput Appl Med Care 1994; 325-331
  • 22 Wilcox A, Hripcsak G, Chen C. Creating an environment for linking knowledge-based systems to a clinical database: a suite of tools. Proc AMIA Annu Fall Symp 1997; 303-307
  • 23 Arkad K, Gao XM, Ahlfeldt H. Query-handling in MLM-based decision support systems. Med Inform (Lond) 1995; 20 (03) 229-240
  • 24 Johansson B, Shahsavar N, Ahlfeldt H, Wigertz O. Database and knowledge base integration in decision support systems. Proc AMIA Annu Fall Symp 1996; 249-253
  • 25 Jenders RA, Corman R, Dasgupta B. Making the standard more standard: a data and query model for knowledge representation in the Arden syntax. AMIA Annu Symp Proc 2003; 2003: 323-330
  • 26 Kraus S, Enders M, Prokosch H-U, Castellanos I, Lenz R, Sedlmayr M. Accessing complex patient data from Arden Syntax Medical Logic Modules. Artif Intell Med 2018; 92: 95
  • 27 Marcos C, González-Ferrer A, Peleg M, Cavero C. Solving the interoperability challenge of a distributed complex patient guidance system: a data integrator based on HL7's Virtual Medical Record standard. J Am Med Inform Assoc 2015; 22 (03) 587-599
  • 28 Bates DW, Kuperman GJ, Wang S. , et al. Ten commandments for effective clinical decision support: making the practice of evidence-based medicine a reality. J Am Med Inform Assoc 2003; 10 (06) 523-530
  • 29 Kim S, Haug PJ, Rocha RA, Choi I. Modeling the Arden Syntax for medical decisions in XML. Int J Med Inform 2008; 77 (10) 650-656
  • 30 McDonald CJ, Huff SM, Suico JG. , et al. LOINC, a universal standard for identifying laboratory observations: a 5-year update. Clin Chem 2003; 49 (04) 624-633
  • 31 Hussain M, Afzal M, Ali T. , et al. Data-driven knowledge acquisition, validation, and transformation into HL7 Arden Syntax. Artif Intell Med 2018; 92: 51-70
  • 32 Benson T, Grieve G. Principles of Health Interoperability: SNOMED CT, HL7 and FHIR. 3rd ed. 2016. London, United KIngdom: Springer International Publishing and Imprint and Springer; 2016
  • 33 Nadkarni PM, Marenco L, Chen R, Skoufos E, Shepherd G, Miller P. Organization of heterogeneous scientific data using the EAV/CR representation. J Am Med Inform Assoc 1999; 6 (06) 478-493
  • 34 Nadkarni PM, Nadkarni P. Metadata-Driven Software Systems in Biomedicine: Designing Systems That Can Adapt to Changing Knowledge (Health Informatics). London; United Kingdom: Springer; 2011
  • 35 Semler SC, Wissing F, Heyder R. German medical informatics initiative. Methods Inf Med 2018; 57 (S 01): e50-e56
  • 36 Haux R. Health information systems - from present to future?. Methods Inf Med 2018; 57 (S 01, Suppl 1): e43-e45
  • 37 Gehring S, Eulenfeld R. German medical informatics initiative: unlocking data for research and health care. Methods Inf Med 2018; 57 (S 01, Suppl 1): e46-e49
  • 38 Prokosch H-U, Acker T, Bernarding J. , et al. MIRACUM: medical informatics in research and care in university medicine. Methods Inf Med 2018; 57 (S 01): e82-e91