Synthesis 2020; 52(20): 3007-3017
DOI: 10.1055/s-0040-1707906
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Allene-Containing Apocarotenoids by Cross-Coupling Strategy

a  Division of Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan   Email: sakaguch@sci.osaka-cu.ac.jp
,
Yuto Nishioka
a  Division of Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan   Email: sakaguch@sci.osaka-cu.ac.jp
,
Naoto Kinashi
a  Division of Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan   Email: sakaguch@sci.osaka-cu.ac.jp
,
Nao Yukihira
b  School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo, 669-1337, Japan
,
a  Division of Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan   Email: sakaguch@sci.osaka-cu.ac.jp
,
a  Division of Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan   Email: sakaguch@sci.osaka-cu.ac.jp
,
Hideki Hashimoto
b  School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo, 669-1337, Japan
,
Shigeo Katsumura
a  Division of Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan   Email: sakaguch@sci.osaka-cu.ac.jp
› Author Affiliations
This study was supported by KAKENHI Grant Number 24106741, 17H06433 and 17H0637 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and KAKENHI Grant Numbers 25410183, 26410183, 16H04181 and 17K05935 from the Japan Society of the Promotion of Science (JSPS).
Further Information

Publication History

Received: 26 May 2020

Accepted after revision: 25 June 2020

Publication Date:
21 July 2020 (online)


Abstract

The stereocontrolled total synthesis of the allene and carbonyl conjugated apocarotenoids, paracentrone and 19-hexanoyloxyparacentrone 3-acetate, was achieved by sequential cross-coupling reactions using boronic acid ester and iodine- or tin-substituted C5 dienes, which were the building blocks for the elongation of the conjugated polyene systems at both terminals.

Supporting Information

 
  • References and Notes

  • 1 Galasko G, Hora J, Toube TP, Weedon BC. L, Andre D, Barbier M, Lederer E, Villanueva VR. J. Chem. Soc. C 1969; 1264
    • 2a Hora J, Toube TP, Weedon BC. L. J. Chem. Soc. C 1970; 241
    • 2b Matsuno T, Okubo M, Komori T. J. Nat. Prod. 1985; 48: 606
  • 3 The antioxidative activities of fucoxanthin: Murakami A, Nakashima M, Koshiba T, Maoka T, Nishino H, Yano M, Sumida T, Kim OK, Koshimizu K, Ohigashi H. Cancer Lett. 2000; 149: 115

    • The antiobesity activities of fucoxanthin:
    • 4a Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K. Biochem. Biophys. Res. Commun. 2005; 332: 392
    • 4b Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K. J. Oleo Sci. 2007; 56: 615
    • 4c Maeda H, Hosokawa M, Sashima T, Miyashita K. J. Agric. Biol. Chem. 2007; 55: 7701
    • 4d Hosokawa M, Miyashita T, Nishikawa S, Emi S, Tsukui T, Beppu F, Okada T, Miyashita K. Arch. Biochem. Biophys. 2010; 504: 17

      The antidiabetic activities of fucoxanthin:
    • 5a Maeda H, Hosokawa M, Sashima T, Murakami-Funayama K, Miyashita K. Mol. Med. Rep. 2009; 2: 897
    • 5b Nishikawa S, Hosokawa M, Miyashita K. Phytomedicine 2012; 19: 389

      The anticancer activities of fucoxanthin:
    • 6a Kotake-Nara E, Kushiro M, Zhang H, Sugawara T, Miyashita K, Nagao A. J. Nutr. 2001; 131: 3303
    • 6b Kumar SR, Hosokawa M, Miyashita K. Mar. Drugs 2013; 11: 5130
  • 7 Papagiannakis E, van Stokkum IH. M, Fey H, Buchel C, van Grondelle R. Photosynth. Res. 2005; 86: 241
    • 8a Kajikawa T, Okumura S, Iwashita T, Kosumi D, Hashimoto H, Katsumura S. Org. Lett. 2012; 14: 808
    • 8b Okumura S, Kajikawa T, Yano K, Sakaguchi K, Kosumi D, Hashimoto H, Katsumura S. Tetrahedron Lett. 2014; 55: 407
    • 9a Kosumi D, Kajikawa T, Okumura S, Sugisaki M, Sakaguchi K, Katsumura S, Hashimoto H. J. Phys. Chem. Lett. 2014; 5: 792
    • 9b Kosumi D, Kajikawa T, Yano K, Okumura S, Sugisaki M, Sakaguchi K, Katsumura S, Hashimoto H. Chem. Phys. Lett. 2014; 602: 75
    • 10a Arpin N, Svec WA, Liaaen-Jensen S. Phytochemistry 1976; 15: 529
    • 10b Bjerkeng B, Vernet M, Nielsen MV, Liaaen-Jensen S. Biochem. System. Ecol. 1990; 18: 303
    • 11a Haugan JA. Tetrahedron Lett. 1996; 37: 3887
    • 11b Haugan JA. J. Chem. Soc., Perkin Trans. 1 1997; 2731
  • 12 Murakami Y, Nakano M, Shimofusa T, Furuichi N, Katsumura S. Org. Biomol. Chem. 2005; 3: 1372

    • For example:
    • 13a Suzuki A. Proc. Jpn. Acad. 2004; 80: 359
    • 13b Suzuki A. Chem. Commun. 2005; 4759
  • 14 Extensive conjugated alkene units containing halogen and MIDA boronate have been developed: Burke Woerly EM, Roy J, Burke MD. Nat. Chem. 2014; 6: 484
    • 15a Coleman RS, Walczak MC. Org. Lett. 2005; 7: 2289
    • 15b Tortosa M, Yakelis NA, Roush WR. J. Org. Chem. 2008; 73: 9657
  • 16 A review on bifunctional dienes: Cornil J, Guerinot A, Cossy J. Org. Biomol. Chem. 2015; 13: 4129
  • 17 Nishioka Y, Yano Y, Kinashi N, Oku N, Toriyama Y, Katsumura S, Shinada T, Sakaguchi K. Synlett 2017; 28: 327
  • 18 Mitchell IS, Pattenden G, Stonehouse J. Org. Biomol. Chem. 2005; 3: 4412
    • 19a Furuichi N, Hara H, Osaki T, Mori H, Katsumura S. Angew. Chem. Int. Ed. 2002; 41: 1023
    • 19b Furuichi N, Hara H, Osaki T, Nakano M, Mori H, Katsumura S. J. Org. Chem. 2004; 69: 7949
  • 20 Yamano Y, Ito M. J. Chem. Soc., Perkin Trans. 1 1993; 1599
    • 21a Takai K, Shinomiya N, Kaihara H, Yoshida N, Moriwake T, Utimoto K. Synlett 1995; 963
    • 21b Takai K, Kunisada Y, Tachibana Y, Yamaji N, Nakatani E. Bull. Chem. Soc. Jpn. 2004; 77: 1581
  • 22 Michels TD, Rhee JU, Vanderwal CD. Org. Lett. 2008; 10: 4787
  • 23 Asano M, Inoue M, Watanabe K, Abe H, Katoh T. J. Org. Chem. 2006; 71: 6942
  • 24 When less of the Hoveyda–Grubbs I catalyst (5 mol%) was employed, the cross-metathesis reaction of 13a with 14 was very slow (CH2Cl2, reflux, 19 h, >50% recovery of 13a). The Grubbs I catalyst (15 mol%) was also effective for the cross-metathesis reaction of both 13a and 13b with 14 (CH2Cl2, reflux, 41 h) to give 4a and 4b. On treatment with I2, the compounds furnished 5a (51%, over 2 steps) and 5b (52%, over 2 steps), respectively.
  • 25 The E-geometries of the C1–C2 olefin in both 5a and 5b were supported by the J values in the 1H NMR spectra: 17.4 Hz in 5a, 17.8 Hz in 5b (Scheme 2).
    • 26a Gillis EP, Burke MD. J. Am. Chem. Soc. 2008; 130: 14084
    • 26b Shiroodi RK, Koleda O, Gevorgyan V. J. Am. Chem. Soc. 2014; 136: 13146
  • 27 Woerly EM, Roy J, Burke MD. Nat. Chem. 2014; 6: 484
  • 28 Domingues B, Pazos Y, de Lera AR. J. Org. Chem. 2000; 65: 5917
  • 29 The incompatibility of MIDA boronate with DIBAL-H was reported; see ref. 26a.
  • 30 Widmer E. Pure Appl. Chem. 1985; 57: 741
    • 31a Kajikawa T, Okumura S, Iwashita T, Kosumi D, Hashimoto H, Katsumura S. Org. Lett. 2012; 14: 808
    • 31b Okumura S, Kajikawa T, Yano K, Sakaguchi K, Kosumi D, Hashimoto H, Katsumura S. Tetrahedron Lett. 2014; 55: 407
  • 32 Kajikawa T, Iguchi N, Katsumura S. Org. Biomol. Chem. 2009; 7: 4586
  • 33 Other geometric isomers were not detected by 1H NMR spectroscopy.
  • 34 Pure paracentrone (1) was obtained by crystallization from Et2O and n-hexane without the need for HPLC purification.

    • De Lera et al. reported on the stereoselective Stille coupling of an iodoallene with a vinylstannane:
    • 35a Vaz B, Álvarez R, Brückner R, de Lera AR. Org. Lett. 2005; 7: 545
    • 35b Vaz B, Pereira R, Pérez M, Álvarez R, de Lera AR. J. Org. Chem. 2008; 73: 6534
  • 36 The low yield of 20 is due to its gradual decomposition during purification by silica gel column chromatography.
  • 37 Tortosa M, Yakelis NA, Roush WR. J. Org. Chem. 2008; 73: 9657
  • 38 The coupling product 21 was decomposed during purification by silica gel column chromatography.
  • 39 The aR/aS ratios were determined by 1H NMR spectra of the reaction mixtures.
  • 40 Compound 7 could be purified by flash column chromatography on silica gel (hexane/AcOEt 5:1) as a single aR isomer.
  • 41 Köpfer A, Breit B. Angew. Chem. Int. Ed. 2015; 54: 6913
  • 42 Ando K, Kobayashi T, Uchida N. Org. Lett. 2015; 17: 2554
  • 43 Attempts to conduct the Stille reaction between 20 and the vinyl stannane analogue of 28 with a tetrahydropyranyl (THP) group instead of a TBS group also resulted in a complex mixture.
    • 44a Kosumi D, Kusumoto T, Fujii R, Sugisaki M, Iinuma Y, Oka N, Takaesu Y, Taira T, Iha M, Frank HA, Hashimoto H. Chem. Phys. Lett. 2009; 483: 95
    • 44b Kosumi D, Kusumoto T, Fujii R, Sugisaki M, Iinuma Y, Oka N, Takaesu Y, Taira T, Iha M, Frank HA, Hashimoto H. Phys. Chem. Chem. Phys. 2011; 13: 10762
    • 44c Kosumi D, Kita M, Fujii R, Sugisaki M, Oka N, Takaesu Y, Taira T, Iha M, Hashimoto H. J. Phys. Chem. Lett. 2012; 3: 2659
    • 44d Yukihira N, Sugai Y, Fujiwara M, Kosumi D, Iha M, Sakaguchi K, Katsumura S, Gardiner AT, Cogdell RJ, Hashimoto H. Faraday Discuss. 2017; 198: 59
  • 45 Kosumi D, Abe K, Karasawa H, Fujiwara M, Cogdell RJ, Hashimoto H, Yoshizawa M. Chem. Phys. 2010; 373: 33
  • 46 In the purification of compounds 28, 36, and 38 by silica gel column chromatography or recrystallization, it was difficult to separate them from trace impurities of unknown structure, which had some signals around 7.5 ppm by 1H NMR spectroscopy.