Synthesis 2020; 52(19): 2795-2806
DOI: 10.1055/s-0040-1707890
short review
© Georg Thieme Verlag Stuttgart · New York

Transition-Metal-Catalyzed Synthesis of Organophosphorus Compounds Involving P–P Bond Cleavage

Mieko Arisawa
Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan   Email: [email protected]
› Author Affiliations
This research was supported by the Japan Agency for Medical Research and Development (AMED), Platform Project for Supporting Drug Discovery and Life Science Research (Grant No. JP19am0101100) and the Tohoku University Center for Gender Equality Promotion (TUMUG).
Further Information

Publication History

Received: 31 March 2020

Accepted after revision: 20 May 2020

Publication Date:
07 July 2020 (online)


Abstract

Organophosphorus compounds are used as drugs, pesticides, detergents, food additives, flame retardants, synthetic reagents, and catalysts, and their efficient synthesis is an important task in organic synthesis. To synthesize novel functional organophosphorus compounds, transition-metal-catalyzed methods have been developed, which were previously considered difficult because of the strong bonding that occurs between transition metals and phosphorus. Addition reactions of triphenylphosphine and sulfonic acids to unsaturated compounds in the presence of a rhodium or palladium catalyst lead to phosphonium salts, in direct contrast to the conventional synthesis involving substitution reactions of organohalogen compounds. Rhodium and palladium complexes catalyze the cleavage of P–P bonds in diphosphines and polyphosphines and can transfer organophosphorus groups to various organic compounds. Subsequent substitution and addition reactions proceed effectively, without using a base, to provide various novel organophosphorus compounds.

1 Introduction

2 Transition-Metal-Catalyzed Synthesis of Phosphonium Salts by Addition Reactions of Triphenylphosphine and Sulfonic Acids

3 Rhodium-Catalyzed P–P Bond Cleavage and Exchange Reactions

4 Transition-Metal-Catalyzed Substitution Reactions Using Diphosphines

4.1 Reactions Involving Substitution of a Phosphorus Group by P–P Bond Cleavage

4.2 Related Substitution Reactions of Organophosphorus Compounds

4.3 Substitution Reactions of Acid Fluorides Involving P–P Bond Cleavage of Diphosphines

5 Rhodium-Catalyzed P–P Bond Cleavage and Addition Reactions

6 Rhodium-Catalyzed P–P Bond Cleavage and Insertion Reactions Using Polyphosphines

7 Conclusions

 
  • References

    • 2a Daneshgar S, Callegari A, Capodaglio AG, Vaccari D. Resources 2018; 7: 37
    • 2b Reijnders L. Res. Conserv. Recycl. 2014; 93: 32
    • 2c Chowdhuty RB, Moore GA, Weatherley AJ, Arora M. J. Cleaner Prod. 2017; 140: 945
  • 3 Geeson MB, Cummins CC. Science 2018; 359: 1383
  • 4 Cowley AH. Chem. Rev. 1965; 65: 617
  • 5 Schaeffer, C. D. Jr.; Strausser, C. A.; Thomsen, M. W.; Yoder, C. H.; Data for General, Organic, and Physical Chemistry http://chembook.weebly.com/uploads/2/5/7/7/257728/schaeffer_cd_-_data_for_general_organic_and_physical_chemistry.pdf (accessed Jun. 23, 2020).
    • 6a Masuda JD, Schoeller WW, Donnadieu B, Bertrand G. Angew. Chem. Int. Ed. 2007; 46: 7052
    • 6b Xu L, Chi Y, Du S, Zhang W.-X, Xi Z. Angew. Chem. Int. Ed. 2016; 55: 9187
  • 7 Sato Y, Kawaguchi S, Nomoto A, Ogawa A. Angew. Chem. Int. Ed. 2016; 55: 9700

    • Triarylphosphines have been used as arylating reagents in catalysis, see:
    • 8a Lee YH, Morandi B. Coord. Chem. Rev. 2019; 386: 96
    • 8b Wang L, Chen H, Duan Z. Chem. Asian J. 2018; 13: 2164
    • 8c Cossairt BM, Piro NA, Cummins CC. Chem. Rev. 2010; 110: 4164
    • 8d Caporali M, Gonsalvi L, Rossin A, Peruzzini M. Chem. Rev. 2010; 110: 4178

      For examples of activation using Ph2PPPh2, see:
    • 9a Giannandrea R, Mastrorilli P, Nobile CF, Dilonardo M. Inorg. Chim. Acta 1996; 249: 237
    • 9b Otomura N, Hirano K, Miura M. Org. Lett. 2018; 20: 7965
    • 9c Otomura N, Okugawa Y, Hirano K, Miura M. Synthesis 2018; 50: 3402
    • 9d Kawaguchi S, Kotani M, Ohe T, Nagata S, Nomoto A, Sonoda M, Ogawa A. Phosphorus, Sulfur, Silicon Relat. Elem. 2010; 185: 1090
    • 9e Kawaguchi S, Nagata S, Nomoto A, Sonoda M, Ogawa A. J. Org. Chem. 2008; 73: 7928
    • 9f Geier SJ, Stephan DW. Chem. Commun. 2008; 99
    • 9g Nagata S, Kawaguchi S, Matsumoto M, Kamiya I, Nomoto A, Sonoda M, Ogawa A. Tetrahedron Lett. 2007; 48: 6637
  • 10 Arisawa M, Yamaguchi M. J. Am. Chem. Soc. 2000; 122: 2387
  • 11 Arisawa M, Yamaguchi M. Adv. Synth. Catal. 2001; 343: 27
  • 12 Arisawa M, Momozuka R, Yamaguchi M. Chem. Lett. 2002; 128: 272
  • 13 Arisawa M, Yamaguchi M. J. Am. Chem. Soc. 2006; 128: 50
  • 14 Arisawa M, Yamada T, Tanii S, Kawada Y, Hashimoto H, Yamaguchi M. Chem. Commun. 2016; 52: 13580
  • 15 For a review, see: Arisawa M. Tetrahedron Lett. 2014; 55: 3391
  • 16 Arisawa M, Yamaguchi M. Tetrahedron Lett. 2010; 51: 4840
  • 17 Arisawa M, Fukumoto K, Yamaguchi M. RSC Adv. 2020; 10: 13820
  • 18 Zhou Y, Yin S, Gao Y, Zhao Y, Goto M, Han L.-B. Angew. Chem. Int. Ed. 2010; 49: 6852
  • 19 The energies were determined from DFT calculations using Jaguar 9.0 software and the B3LYP_6-31G**//B3LYP_6-311G** basis sets. Total free energies (at 298.15 K) of compounds including vibrational frequencies: tetramethyldiphosphine disulfide, E = –1638.842370 a.u., dimethyl disulfide, E = –876.227307 a.u., methyl dimethyldithiophosphinate, E = –1257.549141 a.u.
  • 20 Arisawa M, Ono T, Yamaguchi M. Tetrahedron Lett. 2005; 46: 5669
  • 21 Arisawa M, Watanabe T, Yamaguchi M. Tetrahedron Lett. 2011; 52: 2410
  • 22 Arisawa M, Tazawa T, Ichinose W, Kobayashi H, Yamaguchi M. Adv. Synth. Catal. 2018; 360: 3488
  • 23 Arisawa M, Igarashi Y, Kobayashi H, Yamada T, Bando K, Ichikawa T, Yamaguchi M. Tetrahedron 2011; 67: 7846
  • 24 Arisawa M, Onoda M, Hori C, Yamaguchi M. Tetrahedron Lett. 2006; 47: 5211
  • 25 Arisawa M, Kuwajima M, Yamaguchi M. Tetrahedron Lett. 2010; 51: 3116
  • 26 Li G, Arisawa M, Yamaguchi M. Asian J. Org. Chem. 2013; 2: 983
  • 27 Arisawa M, Yamada T, Yamaguchi M. Tetrahedron Lett. 2010; 51: 4957
  • 28 Arisawa M, Yamaguchi M. Tetrahedron Lett. 2009; 50: 45
  • 29 Arisawa M, Yamaguchi M. Tetrahedron Lett. 2009; 50: 3639
  • 30 Arisawa M, Sawahata K, Yamada T, Sarkar D, Yamaguchi M. Org. Lett. 2018; 20: 938
  • 31 Maier L. Helv. Chim. Acta 1966; 49: 1119

    • For reviews, see:
    • 32a Arisawa M, Tanii S, Tazawa T, Yamaguchi M. Heterocycles 2017; 94: 2179
    • 32b Arisawa M. Phosphorus, Sulfur, Silicon Relat. Elem. 2019; 194: 643