Synthesis 2020; 52(24): 3855-3865
DOI: 10.1055/s-0040-1707835
special topic
© Georg Thieme Verlag Stuttgart · New York

Radical Strategy for the Transition-Metal-Catalyzed Synthesis of γ-Lactones: A Review

Bin Wei
,
Ke-Wei Li
,
Yan-Chen Wu
,
Shi-Qi Tong
,
Ren-Jie Song
Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. of China   Email: srj0731@hnu.edu.cn
› Author Affiliations
We thank the National Natural Science Foundation of China (No. 21762030 and 51878326) for financial support. Ren-Jie Song was also supported by the China Scholarship Council (contract 201908360088).
Further Information

Publication History

Received: 26 April 2020

Accepted after revision: 06 May 2020

Publication Date:
08 June 2020 (online)


Published as part of the Special Topic Recent Advances in Metal-Catalyzed Ring Construction

Abstract

The γ-lactone skeleton is very important component of various natural products, biological molecules, food additives, and perfumes. As a result, much effort has been made towards such compounds. In this review, we summarize recent progress in transition-metal-catalyzed annulation reactions for the formation of γ-lactone derivatives through a radical pathway. Various reagents, such as anhydrides, Togni’s reagent, TMSN3, arenesulfonyl chlorides, arenediazonium salts, dibenzoyl peroxides, O-benzoylhydroxylamine, NFSI, and α-halocarboxylic compounds, used in radical cyclization reactions are described, and the mechanisms of these radical annulation reactions are also discussed.

1 Introduction

2 Annulations of Alkenes with Anhydrides

3 Annulations of Unsaturated Carboxylic Acids with Nucleophiles

4 Annulations of Alkenes with α-Halocarboxylic Compounds

5 Conclusions and Outlook

 
  • References

    • 1a Dams I, Białońska A, Ciunik Z, Wawrzeńczyk C. J. Agric. Food Chem. 2004; 52: 1630
    • 1b Derail C, Hofmann T, Schieberle P. J. Agric. Food Chem. 1999; 47: 4742
    • 1c Obara R, Szumny A, Wzorek A, Szmigiel-Pieczewska M, Białońska A, Ciunik Z, Wawrzeńczyk C. Flavour Fragrance J. 2008; 23: 416
    • 1d Schlutt B, Moran N, Schieberle P, Hofmann T. J. Agric. Food Chem. 2007; 55: 9634
    • 1e Yin X, Chi Y, Guo C, Feng S, Liu J, Sun K, Wu Z. Pharm. Res. 2017; 34: 2172
    • 1f Sha C, Han J, Zhao F, Shao X, Yang H, Wang L, Yu F, Liu W, Li Y. J. Pharm. Biomed. Anal. 2017; 146: 24
    • 1g Triandafillidi I, Raftopoulou M, Savvidou A, Kokotos CG. ChemCatChem 2017; 9: 4120
    • 1h Triandafillidi I, Savvidou A, Kokotos CG. Org. Lett. 2019; 21: 5533
    • 2a Albrecht A, Albrecht Ł, Janecki T. Eur. J. Org. Chem. 2011; 2011: 2747
    • 2b Companyo X, Mazzanti A, Moyano A, Janecka A, Rios R. Chem. Commun. 2013; 49: 1184
    • 2c Kong K, Romo D. Org. Lett. 2006; 8: 2909
    • 2d Pavlakos E, Georgiou T, Tofi M, Montagnon T, Vassilikogiannakis G. Org. Lett. 2009; 11: 4556
    • 2e Gu C.-C, Ouyang X.-H, Song R.-J, Li J.-H. Chem. Commun. 2020; 56: 1279
    • 2f Zope DD, Patnekar SG, Kanetkar VR. Flavour Fragrance J. 2006; 21: 395
    • 2g Wei C.-C, Kong Y.-Y, Hua X, Li G.-Q, Zheng S.-L, Cheng M.-H, Wang P, Miao C.-Y. Br. J. Pharmacol. 2017; 174: 3823
    • 2h Li N, Li C, Han R, Wang Y, Yang M, Wang H, Tian J. Front. Pharmacol. 2019; 10: 53
    • 3a Caruano J, Muccioli GG, Robiette R. Org. Biomol. Chem. 2016; 14: 10134
    • 3b Li CS, Ding Y, Yang BJ, Miklossy G, Yin HQ, Walker LA, Turkson J, Cao S. Org. Lett. 2015; 17: 3556
    • 3c Matsumoto T, Nakamura S, Nakashima S, Ohta T, Yano M, Tsujihata J, Tsukioka J, Ogawa K, Fukaya M, Yoshikawa M, Matsuda H. J. Nat. Med. 2016; 70: 376
    • 3d Ren H, Liu R, Chen L, Zhu T, Zhu WM, Gu QQ. Arch. Pharm. Res. 2010; 33: 499
    • 4a Chen C, Hu J, Su J, Tong X. Tetrahedron Lett. 2014; 55: 3229
    • 4b He M, Bode JW. Org. Lett. 2005; 7: 3131
    • 4c Ng PY, Masse CE, Shaw JT. Org. Lett. 2006; 8: 3999
    • 4d Jiang S.-S, Wu Y.-C, Luo S.-Z, Teng F, Song R.-J, Xie Y.-X, Li J.-H. Chem. Commun. 2019; 55: 12805
    • 5a Berini C, Pelloux-Leon N, Minassian F, Denis JN. Org. Biomol. Chem. 2009; 7: 4512
    • 5b Satoh N, Yokoshima S, Fukuyama T. Org. Lett. 2011; 13: 3028
    • 5c Yamashita S, Mase N, Takabe K. Tetrahedron: Asymmetry 2008; 19: 2115
    • 6a Chen F, Lai S.-Q, Zhu F.-F, Meng Q, Jiang Y, Yu W, Han B. ACS Catal. 2018; 8: 8925
    • 6b Lin J, Song RJ, Hu M, Li JH. Chem. Rec. 2019; 19: 440
    • 6c Song R, Xie Y. Chin. J. Chem. 2017; 35: 280
    • 6d Tsvetkov NP, Gonzalez-Rodriguez E, Hughes A, Dos Passos Gomes G, White FD, Kuriakose F, Alabugin IV. Angew. Chem. Int. Ed. 2018; 57: 3651
    • 6e Wu Y.-C, Jiang S.-S, Luo S.-Z, Song R.-J, Li J.-H. Chem. Commun. 2019; 55: 8995
    • 6f Zhao Q, Jin J.-K, Wang J, Zhang F.-L, Wang Y.-F. Chem. Sci. 2020; 11: 3909
    • 7a Lan X.-W, Wang N.-X, Xing Y. Eur. J. Org. Chem. 2017; 2017: 5821
    • 7b Li ZL, Fang GC, Gu QS, Liu XY. Chem. Soc. Rev. 2020; 49: 32
    • 7c Liu S, Klussmann M. Chem. Commun. 2020; 56: 1557
    • 7d Nakafuku KM, Fosu SC, Nagib DA. J. Am. Chem. Soc. 2018; 140: 11202
    • 7e Sauer GS, Lin S. ACS Catal. 2018; 8: 5175
    • 7f Zhao QQ, Li M, Xue XS, Chen JR, Xiao WJ. Org. Lett. 2019; 21: 3861
    • 8a Chen JR, Hu XQ, Lu LQ, Xiao WJ. Chem. Rev. 2015; 115: 5301
    • 8b Corma A, Leyva-Perez A, Sabater MJ. Chem. Rev. 2011; 111: 1657
    • 8c Mao G, Huang Q, Wang C. Eur. J. Org. Chem. 2017; 2017: 3549
  • 9 Huang L, Jiang H, Qi C, Liu X. J. Am. Chem. Soc. 2010; 132: 17652
  • 10 Wu L, Zhang Z, Liao J, Li J, Wu W, Jiang H. Chem. Commun. 2016; 52: 2628
    • 11a Lu XY, Li JS, Wang SQ, Zhu YJ, Li YM, Yan LY, Li JM, Wang JY, Zhou HP, Ge XT. Chem. Commun. 2019; 55: 11123
    • 11b Tanaka T, Yazaki R, Ohshima T. J. Am. Chem. Soc. 2020; 142: 4517
    • 11c Zhou Y, Bandar JS, Liu RY, Buchwald SL. J. Am. Chem. Soc. 2018; 140: 606
    • 11d Zhang J, Zhang L, Sun X, Yang Y, Kong L, Lu C, Lv G, Wang T, Wang H, Fu F. J. Pharmacol. Exp. Ther. 2016; 359: 374
    • 11e Wan C, Song R.-J, Li J.-H. Org. Lett. 2019; 21: 2800
  • 12 Zhu R, Buchwald SL. J. Am. Chem. Soc. 2012; 134: 12462
  • 13 Zhu R, Buchwald SL. J. Am. Chem. Soc. 2015; 137: 8069
  • 14 Hemric BN, Shen K, Wang Q. J. Am. Chem. Soc. 2016; 138: 5813
  • 15 Xie J, Wang YW, Qi LW, Zhang B. Org. Lett. 2017; 19: 1148
    • 16a Johnson BM, Shu YZ, Zhuo X, Meanwell NA. J. Med. Chem. 2020; 63 DOI: in press; org/10.1021/acs.jmedchem.9b01877.
    • 16b Szpera R, Moseley DF. J, Smith LB, Sterling AJ, Gouverneur V. Angew. Chem. Int. Ed. 2019; 58: 14824
    • 16c Zhu W, Doubleday PF, Catlin DS, Weerawarna PM, Butrin A, Shen S, Wawrzak Z, Kelleher NL, Liu D, Silverman RB. J. Am. Chem. Soc. 2020; 142: 4892
    • 16d Wu Y.-C, Jiang S.-S, Song R.-J, Li J.-H. Chem. Commun. 2019; 55: 4371
    • 16e Kokotos G, Hsu YH, Burke JE, Baskakis C, Kokotos CG, Magrioti V, Dennis EA. J. Med. Chem. 2010; 53: 3602
  • 17 Sha W, Zhang W, Ni S, Mei H, Han J, Pan Y. J. Org. Chem. 2017; 82: 9824
  • 18 Da Y, Han S, Du X, Liu S, Liu L, Li J. Org. Lett. 2018; 20: 5149
  • 19 Yuan F, Zhou S, Yang Y, Guo M, Tang X, Wang G. Org. Chem. Front. 2018; 5: 3306
  • 20 Sha W, Ni S, Han J, Pan Y. Org. Lett. 2017; 19: 5900
    • 21a Gan Z, Yan Q, Li G, Li Q, Dou X, Li GY, Yang D. Adv. Synth. Catal. 2019; 361: 4558
    • 21b Liu C, Wu S, Xu J, Chen L, Zheng P, Chi YR. Org. Lett. 2019; 21: 9493
    • 21c Wang N, Saidhareddy P, Jiang X. Nat. Prod. Rep. 2020; 37: 246
    • 21d Cao A.-Z, Xiao Y.-T, Wu Y.-C, Song R.-J, Xie Y.-X, Li J.-H. Org. Biomol. Chem. 2020; 18: 2170
  • 22 Du B, Wang Y, Mei H, Han J, Pan Y. Adv. Synth. Catal. 2017; 359: 1684
  • 23 Zhang J, Zhou K, Wu J. Org. Chem. Front. 2018; 5: 813
  • 24 Wang Y, Deng L, Zhou J, Wang X, Mei H, Han J, Pan Y. Adv. Synth. Catal. 2018; 360: 1060
  • 25 Xiong YS, Zhang B, Yu Y, Weng J, Lu G. J. Org. Chem. 2019; 84: 13465
    • 26a Appalanaidu K, Dadmal T, Jagadeesh Babu N, Kumbhare RM. RSC Adv. 2015; 5: 88063
    • 26b Fang YQ, Bio MM, Hansen KB, Potter MS, Clausen A. J. Am. Chem. Soc. 2010; 132: 15525
    • 26c Kralova P, Benicka S, Soural M. ACS Comb. Sci. 2019; 21: 154
    • 26d Ouyang XH, Song RJ, Li JH. Chem. Asian J. 2018; 13: 2316
    • 27a Cambie D, Bottecchia C, Straathof NJ, Hessel V, Noel T. Chem. Rev. 2016; 116: 10276
    • 27b Ouyang XH, Li Y, Song RJ, Li JH. Org. Lett. 2018; 20: 6659
    • 27c Perutz RN, Procacci B. Chem. Rev. 2016; 116: 8506
    • 27d Wang X, Han YF, Ouyang XH, Song RJ, Li JH. Chem. Commun. 2019; 55: 14637
    • 27e Yong X, Han YF, Li Y, Song RJ, Li JH. Chem. Commun. 2018; 54: 12816
    • 27f Sideri IK, Voutyritsa E, Kokotos CG. Org. Biomol. Chem. 2018; 16: 4596
  • 28 Wei X.-J, Yang DT, Wang L, Song T, Wu L.-Z, Liu Q. Org. Lett. 2013; 15: 6054
  • 29 Liu D, Tang S, Yi H, Liu C, Qi X, Lan Y, Lei A. Chem. Eur. J. 2014; 20: 15605
  • 30 Lv Y, Pu W, Mao S, Ren X, Wu Y, Cui H. RSC Adv. 2017; 7: 41723
  • 31 Pan G.-H, Song R.-J, Li J.-H. Org. Chem. Front. 2018; 5: 179
  • 32 Iwasaki M, Miki N, Ikemoto Y, Ura Y, Nishihara Y. Org. Lett. 2018; 20: 3848
  • 33 Ye Z, Cai X, Li J, Dai M. ACS Catal. 2018; 8: 5907
  • 34 Triandafillidi I, Kokotou MG, Kokotos CG. Org. Lett. 2018; 20: 36