Synthesis 2020; 52(15): 2233-2240
DOI: 10.1055/s-0040-1707816
paper
© Georg Thieme Verlag Stuttgart · New York

Krapcho Dealkoxycarbonylation Strategy of Ethyl Cyanoacetate for the Synthesis of 3-Hydroxy-3-cyanomethyl-2-oxindoles and 3,3′-Dicyanomethyl-2-oxindoles in a Reaction with Isatin

,
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli New Transit Campus, Bijnour-Sisendi Road, Lucknow 226002, India   Email: keshri.tiwari@niperraebareli.edu.in
› Author Affiliations
Further Information

Publication History

Received: 22 December 2019

Accepted after revision: 30 April 2020

Publication Date:
25 May 2020 (online)


Abstract

A new strategy for the synthesis of 3-hydroxy-3-cyanomethyl-2-oxindoles and 3,3′-dicyanomethyl-2-oxindoles in a reaction of isatin with ethyl cyanoacetate by Krapcho dealkoxycarbonylation reaction in aqueous media is demonstrated. The reaction provides an easy access to synthetically and medicinally valuable oxindole alkylnitriles in good to very good yields. Wider substrate scope and operationally simple experimental procedures are highlighted features of the developed protocol. Based on control experiments, a plausible mechanism of reaction and synergistic effect of water is also rationalized.

Supporting Information

 
  • References

    • 1a Kitanosono T, Masuda K, Xu P, Kobayashi S. Chem. Rev. 2018; 118: 679
    • 1b Lipshutz BH, Gallou F, Handa S. ACS Sustainable Chem. Eng. 2016; 4: 5838
    • 1c Simon M.-O, Li C.-J. Chem. Soc. Rev. 2012; 41: 1415
    • 2a Clark JH, Tavener SJ. Org. Process Res. Dev. 2007; 11: 149
    • 2b Sheldon RA. Green Chem. 2005; 7: 267
    • 3a Ni J, Sohma Y, Kanai M. Chem. Commun. 2017; 53: 3311
    • 3b Kitanosono T, Kobayashi S. Chem. Asian J. 2015; 10: 133
    • 3c Kitanosono T, Sakai M, Ueno M, Kobayashi S. Org. Biomol. Chem. 2012; 10: 7134
    • 3d Ueno M, Kitanosono T, Sakai M, Kobayashi S. Org. Biomol. Chem. 2011; 9: 3619
    • 4a Krapcho AP, Ciganek E. Org. React. 2013; 81: 1
    • 4b Poon PS, Banerjee AK, Laya MS. J. Chem. Res. 2011; 35: 67
  • 5 Babu PK, Bodireddy MR, Puttaraju RC, Vagae D, Nimmakayala R, Surineni N, Gajula MR, Kumar P. Org. Process Res. Dev. 2018; 22: 773
    • 6a Grabowaski K, Baringhaus K.-H, Schneider G. Nat. Prod. Rep. 2008; 25: 892
    • 6b Newman DJ, Cragg GM. J. Nat. Prod. Rep. 2016; 79: 629
  • 7 Wendeborn S, de Mesmaeker A, Brill WK.-D, Berteina S. Acc. Chem. Res. 2000; 33: 215
    • 8a Allred TK, Manoni F, Harran PG. Chem. Rev. 2017; 117: 11994
    • 8b DeCorte BL. J. Med. Chem. 2016; 59: 9295
    • 8c Butler MS. J. Nat. Prod. 2004; 67: 2141
    • 8d Kingston DG. I. J. Nat. Prod. 2011; 74: 496
    • 9a Yu B, Xing H, Yu D.-Q, Liu H.-M. Beilstein J. Org. Chem. 2016; 12: 1000
    • 9b MacDonald JP, Badillo JJ, Arevalo GE, Silva-Garcia A, Franz AK. ACS Comb. Sci. 2012; 14: 285
    • 9c Welsch ME, Snyder SA, Stockwell BR. Curr. Opin. Chem. Biol. 2010; 14: 347
    • 9d Peddibhotla S. Curr. Bioact. Compd. 2009; 5: 20
    • 10a Cao ZY, Zhou F, Zhou J. Acc. Chem. Res. 2018; 51: 1443
    • 10b Yu L.-F, Li Y.-Y, Su M.-B, Zhang M, Zhang W, Zhang LN, Pang T, Zhang R.-T, Liu B, Li J.-Y, Li J, Nan F.-J. ACS Med. Chem. Lett. 2013; 4: 475
    • 11a Guo Q, Bhanushali M, Zhao C.-G. Angew. Chem. Int. Ed. 2010; 49: 9460
    • 11b Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 11c Kohno J, Koguchi Y, Nishio M, Nakao K, Kuroda M, Shimizu R, Ohnuki T, Komatsubara S. J. Org. Chem. 2000; 65: 990
    • 11d Kagata T, Saito S, Shigemori H, Ohsaki A, Ishiyama H, Kubota T, Kobayashi J. J. Nat. Prod. 2006; 69: 1517
    • 12a Lopez R, Palomo C. Angew. Chem. Int. Ed. 2015; 54: 13170
    • 12b Chakraborty S, Patel YJ, Krause JA, Guan H. Angew. Chem. Int. Ed. 2013; 52: 7523
    • 12c Sureshkumar D, Ganesh V, Kumagai N, Shibasaki M. Chem. Eur. J. 2014; 20: 15723
  • 13 Wang G.-W, Zhou A.-X, Wang J.-J, Hu R.-B, Yang S.-D. Org. Lett. 2013; 15: 5270
  • 14 Ren Q, Huang J, Wang L, Li W, Liu H, Jiang X, Wang J. ACS Catal. 2012; 2: 2622
  • 15 Rao VU. B, Kumar K, Das T, Vanka K, Singh RP. J. Org. Chem. 2017; 82: 4489
  • 16 Zhang Y, Luo L, Ge J, Yan SQ, Peng YX, Liu YR, Liu J.-X, Liu C, Ma T, Luo H.-Q. J. Org. Chem. 2019; 84: 4000
    • 17a Wenkert E, Bernstein BS, Udelhofen JH. J. Am. Chem. Soc. 1958; 80: 4899
    • 17b Sugasawa S, Murayama M. Chem. Pharm. Bull. 1958; 6: 194
    • 18a Chandran R, Prabhakaran SM, Kumar V, Thakar SR, Tiwari KN. ChemistrySelect 2019; 4: 12757
    • 18b Tiwari KN, Pandurang TP, Pant S, Kumar R. Tetrahedron Lett. 2016; 57: 2286
    • 18c Tiwari KN, Taur PP, Pant S, Sreelekha P. Synth. Commun. 2018; 48: 802
    • 18d Tiwari KN, Prabhakaran SM, Kumar V, Thakar SR, Mathew S. Tetrahedron 2018; 74: 3596
    • 18e Tiwari KN, Thakar SR, Kumar V, Prabhakaran SM. Synth. Commun. 2018; 48: 2965
    • 19a Romney DK, Arnold FH, Lipshutz BH, Li C.-J. J. Org. Chem. 2018; 83: 7319
    • 19b Sela T, Vigalok A. Org. Lett. 2014; 16: 1964
    • 19c Manna A, Kumar A. J. Phys. Chem. A. 2013; 117: 2446
    • 19d Jung Y, Marcus RA. J. Am. Chem. Soc. 2007; 129: 5492
  • 20 Deng T, Wang H, Cai C. Eur. J. Org. Chem. 2014; 32: 7259
  • 21 Gajulapalli VP. R, Vinyagam P, Kesavan V. Org. Biomol. Chem. 2014; 12: 4186
  • 22 Sharma P, Senwar KR, Jeengar MK, Reddy TS, Naidu VG. M, Kamal A, Shankaraiah N. Eur. J. Med. Chem. 2015; 104: 11