Synthesis 2020; 52(16): 2277-2298
DOI: 10.1055/s-0040-1707600
review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Decarboxylative Reactions of Alkynoic Acids

Muhammad Aliyu Idris
,
Sunwoo Lee
Department of Chemistry, Chonnam National University, 77 Yongbongro, Gwangju, 61186, Republic of Korea   Email: sunwoo@chonnam.ac.kr
› Author Affiliations
This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2017R1A2B2002929).
Further Information

Publication History

Received: 21 January 2020

Accepted after revision: 09 March 2020

Publication Date:
06 April 2020 (online)


Dedicated to Prof. Dr. Kye Chun Nam on the occasion of his 65th birthday.

Abstract

Alkynoic acids have been widely employed as alkyne and alkene sources in decarboxylative reactions. Alkynoic acid coupling leads to the formation of direct coupling products and cyclized products through sequential reactions. Moreover, homocoupling and multicomponent reactions have been developed. The decarboxylative addition of alkynoic acids generates the corresponding alkene products. A number of synthetic methods are utilized for the preparation of arylpropynoic acids including the Sonogashira coupling and the carboxylation of terminal alkynes. Recently, the use of decarboxylative halogenations has also been reported. This review covers decarboxylative reactions of alkynoic acids reported between 2013 and 2019; further, it is divided into several sections according to the type of reaction.

1 Introduction

2 Direct Coupling

3 Sequential Reactions

4 Homocoupling

5 Multicomponent Reactions

6 Addition

7 Halogenations

8 Synthesis of Alkynoic Acids

9 Conclusion

 
  • References

  • 1 Goossen LJ, Deng G, Levy LM. Science 2006; 313: 662
    • 2a Goossen LJ. Angew. Chem. Int. Ed. 2008; 47: 3100
    • 2b Rodriguez N, Goossen LJ. Chem. Soc. Rev. 2011; 40: 5030
  • 3 Moon J, Jeong M, Nam H, Ju J, Moon JH, Jung HM, Lee S. Org. Lett. 2008; 10: 945
    • 4a Shang R, Liu L. Sci. China: Chem. 2011; 54: 1670
    • 4b Park K, Lee S. RSC Adv. 2013; 3: 14165
    • 4c Chen C, Wu J, Yan G, Huang D. Tetrahedron Lett. 2020; 61: 151415 ; DOI: 10.1016/j.tetlet.2019.151415
  • 5 Park K, Kim W, Lee S. Bull. Korean Chem. Soc. 2013; 34: 2859
  • 6 Gomez-Herrera A, Nahra F, Wu J, Izquierdo F, Brill M, Cazin CS. J, Nolan SP. ChemistrySelect 2019; 4: 5
  • 7 Reddy PV, Srinivas P, Annapurna M, Bhargava S, Wagler J, Mirzadeh N, Kantam ML. Adv. Synth. Catal. 2013; 355: 705
  • 8 Li X, Yang F, Wu Y. J. Org. Chem. 2013; 78: 4543
  • 9 Caporale A, Tartaggia S, Castellin A, De Lucchi O. Beilstein J. Org. Chem. 2014; 10: 384
  • 10 Li X, Yang F, Wu Y. RSC Adv. 2014; 4: 13738
  • 11 Yang Y, Lim YH, Robins EG, Johannes CW. RSC Adv. 2016; 6: 72810
  • 12 Hwang J, Park K, Choe J, Min H, Song KH, Lee S. J. Org. Chem. 2014; 79: 3267
  • 13 Fujino T, Hinoue T, Usuki Y, Satoh T. Org. Lett. 2016; 18: 5688
  • 14 Lee J, Raja GC. E, Yu S, Lee J, Song KH, Lee S. ACS Omega 2017; 2: 6259
  • 15 Yu S, Cho E, Kim J, Lee S. J. Org. Chem. 2017; 82: 11150
  • 16 Bhojane JM, Jadhav VG, Nagarkar JM. New J. Chem. 2017; 41: 6775
  • 17 Jiao J, Zhang X, Zhang X. Tetrahedron 2015; 71: 9245
  • 18 Jang J, Raja GC. E, Lee J, Son Y, Kim J, Lee S. Tetrahedron Lett. 2016; 57: 4581
  • 19 Qian LW, Sun M, Dong J, Xu Q, Zhou Y, Yin SF. J. Org. Chem. 2017; 82: 6764
  • 20 Park J, Song KH, Lee S. Synthesis 2018; 50: 3197
  • 21 Chang S, Liu Y, Yin SZ, Dong LL, Wang JF. New J. Chem. 2019; 43: 5357
  • 22 Balsane KE, Gund SH, Nagarkar JM. Catal. Commun. 2018; 104: 78
    • 23a Kim J, Kang D, Yoo EJ, Lee PH. Eur. J. Org. Chem. 2013; 7902
    • 23b Reddy LM, Reddy PR, Reddy ChK. Synthesis 2017; 49: 1675
  • 24 Li X, Yang F, Wu Y, Wu Y. Org. Lett. 2014; 16: 992
  • 25 Yang L, Jiang L, Li Y, Fu X, Zhang R, Jin K, Duan C. Tetrahedron 2016; 72: 3858
  • 26 Mai W, Song G, Sun G, Yang L, Yuan J, Xiao Y, Mao P, Qu L. RSC Adv. 2013; 3: 19264
  • 27 Hossian A, Manna K, Das P, Jana R. ChemistrySelect 2018; 3: 4315
  • 28 Raja GC. E, Irudayanathan FM, Kim H, Kim J, Lee S. J. Org. Chem. 2016; 81: 5244
  • 29 Lee J, Raja GC. E, Son Y, Jang J, Kim J, Lee S. Tetrahedron Lett. 2016; 57: 4824
  • 30 Son Y, Kim H, Lee J, Jang J, Lee C, Lee S. Tetrahedron Lett. 2017; 58: 1413
  • 31 Tummanapalli S, Muthuraman P, Vangapandu DN, Shanmugavel G, Kambampati S, Lee KW. RSC Adv. 2015; 5: 49392
  • 32 Reddy CB, Bharti R, Kumar S, Das P. RSC Adv. 2016; 6: 71117
  • 33 Chen S, Wu X, Wang J, Hao X, Xia Y, Shen Y, Jing H, Liang Y. Org. Lett. 2016; 18: 4016
  • 34 Ramesh K, Satyanarayana G. J. Organomet. Chem. 2019; 890: 58
  • 35 Zha D, Li H, Li S, Wang L. Adv. Synth. Catal. 2017; 359: 467
  • 36 Raja GC. E, Ryu JY, Lee J, Lee S. Org. Lett. 2017; 19: 6606
  • 37 Min H, Palani T, Park K, Hwang J, Lee S. J. Org. Chem. 2014; 79: 6279
  • 38 Liu D, Li F, Li H, Gao J, Lang J. Tetrahedron 2014; 70: 2416
  • 39 Choi J, Park K, Lim J, Jung HM, Lee S. Asian J. Org. Chem. 2015; 4: 969
  • 40 Irudayanathan FM, Raja GC. E, Lee S. Tetrahedron 2015; 71: 4418
  • 41 Saha TK, Das R. ChemistrySelect 2018; 3: 147
  • 42 Park K, Heo Y, Lee S. Org. Lett. 2013; 15: 3322
  • 43 Jung B, Park K, Song KH, Lee S. Tetrahedron Lett. 2015; 56: 4697
  • 44 Lee Y, Park K, Kim H, Kim J, Lee YJ, Park KD, Oh J, Lee S. ARKIVOC 2016; (v): 1
  • 45 Lim J, Park K, Byeun A, Lee S. Tetrahedron Lett. 2014; 55: 4875
  • 46 Choi J, Lim J, Irudayanathan FM, Kim H, Park J, Yu S, Jang Y, Raja GC. E, Nam KC, Kim J, Lee S. Asian J. Org. Chem. 2016; 5: 770
    • 47a Lim J, Choi J, Kim H, Kim IS, Nam KC, Kim J, Lee S. J. Org. Chem. 2016; 81: 303
    • 47b Kumar V, Chipeleme A, Chibale K. Eur. J. Org. Chem. 2008; 43
  • 48 Feng H, Zhao P, Sun Z. Tetrahedron Lett. 2015; 56: 5676
  • 49 Zhao P, Feng H, Pan H, Sun Z, Tong M. Org. Chem. Front. 2017; 4: 37
  • 50 Feng H, Zhao P, Huang L, Sun Z, Tong M. Asian J. Org. Chem. 2017; 6: 161
  • 51 Wang J, Shen Q, Zhang J, Song G. Tetrahedron Lett. 2015; 56: 903
  • 52 Palani T, Park K, Song KH, Lee S. Adv. Synth. Catal. 2013; 355: 1160
  • 53 Xu Y, Zhao J, Tang X, Wu W, Jiang H. Adv. Synth. Catal. 2014; 356: 2029
  • 54 Hu W, Li Z, Li J, Wu W, Liu H, Jianga H. Adv. Synth. Catal. 2017; 359: 3509
  • 55 Irudayanathan FM, Raja GC. E, Kim H, Na K, Lee S. Bull. Korean Chem. Soc. 2016; 37: 463
  • 56 Irudayanathan FM, Lee S. Org. Lett. 2017; 19: 2318
  • 57 Fu H, Shang J, Yang T, Shen Y, Gao C, Li Y. Org. Lett. 2018; 20: 489
  • 58 Li Y, Shang J, Wang X, Xia W, Yang T, Xin Y, Li Y. Org. Lett. 2019; 21: 2227
  • 59 Han S, Kim H, Zhang M, Xia Y, Lee S. Org. Lett. 2019; 21: 5426
  • 60 Yin W, He C, Chen M, Zhang H, Lei A. Org. Lett. 2009; 11: 709
  • 61 Su L, Dong J, Liu L, Sun M, Qiu R, Zhou Y, Yin S. J. Am. Chem. Soc. 2016; 138: 12348
  • 62 Kumar A, Muniraj N, Prabhu KR. Eur. J. Org. Chem. 2019; 2735
  • 63 Pan X, Wan X, Yu X, Zhang H, Xie W. Synthesis 2014; 46: 2057
  • 64 Jayaraman A, Cho E, Irudayanathan FM, Kim J, Lee S. Adv. Synth. Catal. 2018; 360: 130
  • 65 Jayaraman A, Cho E, Kim J, Lee S. Adv. Synth. Catal. 2018; 360: 3978
  • 66 Jayaraman A, Lee S. Org. Lett. 2019; 21: 3485
  • 67 Jayaraman A, Lee S. Org. Lett. 2019; 21: 7923
  • 68 Park K, You J.-M, Jeon S, Lee S. Eur. J. Org. Chem. 2013; 1973
  • 69 Wang X, Lim YN, Lee C, Jang H, Lee BY. Eur. J. Org. Chem. 2013; 2013: 1867
  • 70 Liu X, Ma J, Niu Z, Yang G, Cheng P. Angew. Chem. Int. Ed. 2015; 54: 988
  • 71 Wu Z, Sun L, Liu Q, Yang X, Ye X, Hub Y, Huang Y. Green Chem. 2017; 19: 2080
  • 72 Wu Z, Liu Q, Yang X, Ye X, Duan H, Zhang J, Zhao B, Huang Y. ACS Sustainable Chem. Eng. 2017; 5: 9634
  • 73 Chowdhury AH, Ghosh S, Islam SM. New J. Chem. 2018; 42: 14194
  • 74 Chowdhury AH, Kayal U, Chowdhury IH, Ghosh S, Islam SM. ChemistrySelect 2019; 4: 1069
  • 75 Trivedi M, Bhaskaran, Kumar A, Singh G, Kumar A, Rath NP. New J. Chem. 2016; 40: 3109
  • 76 Li S, Sun J, Zhang Z, Xie R, Fang X, Zhou M. Dalton Trans. 2016; 45: 10577
  • 77 Trivedi M, Singh G, Kumar A, Rath NP. Dalton Trans. 2015; 44: 20874
  • 78 Trivedi M, Smreker JR, Singh G, Kumar A, Rath NP. New J. Chem. 2017; 41: 14145