Synthesis 2020; 52(17): 2497-2511
DOI: 10.1055/s-0040-1707403
short review
© Georg Thieme Verlag Stuttgart · New York

Tertiary Enamides as Versatile and Valuable Substrates to Reach Chemical Diversity

Frédéric Beltran
a  Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
,
Laurence Miesch
b  Équipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS UMR 7177, 4, rue Blaise Pascal CS 90032, 67081 Strasbourg, France   Email: [email protected]
› Author Affiliations
We thank the Centre National de la Recherche Scientifique (CNRS) and the University of Strasbourg for financial support.
Further Information

Publication History

Received: 11 March 2020

Accepted after revision: 28 April 2020

Publication Date:
18 May 2020 (online)


Abstract

Tertiary enamides display versatile reactivity and great stability compared to their enamine congeners. This review covers progress made in the development of new methods involving the enaminic reactivity of tertiary enamides with respect to the synthesis of complex nitrogen-containing compounds. A focus on the preparation of biologically active molecules is also presented. The syntheses reported herein are classified based on their reaction type. In addition, mechanistic insights are given for most of the new transformations.

1 Introduction

2 [2+2] Cycloadditions

3 [4+2] Cycloadditions

4 Electrocyclizations and Cycloisomerizations

5 Sigmatropic Rearrangements

6 Nucleophilic Additions

7 Tertiary Enamides as Electrophiles

8 Cross-Coupling Reactions

9 Tertiary-Enamide-Assisted Reactions

10 Conclusion and Perspectives

 
  • References

    • 1a Stork G, Terrell R, Szmuszkovicz J. J. Am. Chem. Soc. 1954; 76: 2029
    • 1b Stork G, Landesman HK. J. Am. Chem. Soc. 1956; 78: 5128
    • 1c Stork G, Landesman HK. J. Am. Chem. Soc. 1956; 78: 5129
    • 1d Stork G, Brizzolara A, Landesman H, Szmuszkovicz J, Terrell R. J. Am. Chem. Soc. 1963; 85: 207
  • 2 Gigant N, Chausset-Boissarie L, Gillaizeau I. Chem. Eur. J. 2014; 20: 7548
  • 3 Wang M.-X. Chem. Commun. 2015; 51: 6039
  • 4 Cai X, Yang M, Guo H. Curr. Org. Synth. 2019; 16: 70
  • 5 de Faria AR, Matos CR. R, Correia CR. D. Tetrahedron Lett. 1993; 34: 27
  • 6 Correia CR. D, de Faria AR, Carvalho ES. Tetrahedron Lett. 1995; 36: 5109
  • 7 Miranda PC. M. L, Correia CR. D. Tetrahedron Lett. 1999; 40: 7735
  • 8 Neyyappadath R, Greenhalgh M, Cordes D, Slawin A, Smith A. Eur. J. Org. Chem. 2019; 5169
  • 9 Himeshima Y, Sonada T, Kobayashi H. Chem. Lett. 1983; 1211
  • 10 Feltenberger JB, Hayashi R, Tang Y, Babiash ES. C, Hsung RP. Org. Lett. 2009; 11, 3666
  • 11 Ma Z.-X, Feltenberger JB, Hsung RP. Org. Lett. 2012; 14: 2742
  • 12 de Nanteuil F, Waser J. Angew. Chem. Int. Ed. 2013; 52: 9009
  • 13 Bugarin A, Jones KD, Connell BT. Chem. Commun. 2010; 46: 1715
  • 14 Wei S, Yin L, Wang SR, Tang Y. Org. Lett. 2019; 21: 1458
    • 15a Bach T, Schröder J. Liebigs Ann./Recl. 1997; 2265
    • 15b Bach T. Angew. Chem. Int. Ed. Engl. 1996; 35: 884
    • 15c Bach T, Schröder J, Brandl T, Hecht J, Harms K. Tetrahedron 1998; 54: 4507
  • 16 Bach T, Schröder J. Synthesis 2001; 1117
  • 17 Elliot LD, Booker-Milburn KI. Org. Lett. 2019; 21: 1463
  • 18 Huang Y, Iwama T, Rawal VH. J. Am. Chem. Soc. 2000; 122: 7843
  • 19 Sarkar N, Banerjee A, Nelson SG. J. Am. Chem. Soc. 2008; 130: 9222
  • 20 Jha A, Chou T.-Y, AlJaroudi Z, Ellis BD, Cameron TS. Beilstein J. Org. Chem. 2014; 10: 848
  • 21 Zhang W, Zheng A, Liu Z, Yang L, Liu Z. Tetrahedron Lett. 2005; 46: 5691
  • 22 Batey RA, Simoncic PD, Lin D, Smyj RP, Lough AJ. Chem. Commun. 1999; 651
  • 23 Hadden M, Stevenson PJ. Tetrahedron Lett. 1999; 40: 1215
  • 24 Xia C, Heng L, Ma D. Tetrahedron Lett. 2002; 43: 9405
  • 25 Greshock TJ, Funk RL. J. Am. Chem. Soc. 2006; 128: 4946
  • 26 Tighineanu E, Chiraleu F, Råileanu D. Tetrahedron 1980; 36: 1385
  • 27 Huntley RJ, Funk RL. Org. Lett. 2006; 8: 3403
  • 28 Li Y, Zou H, Gong J, Xiang J, Luo T, Quan J, Wang G, Yang Z. Org. Lett. 2007; 9: 4057
  • 29 Undeela S, Chandra R, Nanubolu JB, Menon RS. Org. Biomol. Chem. 2019; 17: 369
  • 30 Barbazanges M, Meyer C, Cossy J. Org. Lett. 2007; 9: 3245
  • 31 Ylioja PM, Mosley AD, Charlot CE, Carbery DR. Tetrahedron Lett. 2008; 49: 1111
  • 32 Barbazanges M, Meyer C, Cossy J, Turner P. Chem. Eur. J. 2011; 17: 4480
  • 33 Cossey KN, Funk RL. J. Am. Chem. Soc. 2004; 126: 12216
  • 34 Xu X.-M, Lei C.-H, Tong S, Zhu J, Wang M.-X. Org. Chem. Front. 2018; 5: 3138
  • 35 Zhu W, Zhao L, Wang M.-X. J. Org. Chem. 2015; 80: 12047
  • 36 Xu X.-M, Zhao L, Zhu J, Wang M.-X. Angew. Chem. Int. Ed. 2016; 55: 3799
  • 37 Zhen L, Tong S, Zhu J, Wang M.-X. Chem. Eur. J. 2020; 26: 401
  • 38 Tong S, Wang M.-X. Synlett 2018; 30: 483
  • 39 Andna L, Miesch L. Org. Lett. 2018; 20: 3430
  • 40 Suga S, Nishida T, Yamada D, Nagaki A, Yoshida J.-i. J. Am. Chem. Soc. 2004; 126: 14338
  • 41 Yoshida J.-i, Suga S. Chem. Eur. J. 2002; 8: 2651
  • 42 Brizgys GJ, Jung HH, Floreancig PE. Chem. Sci. 2012; 3: 438
  • 43 Gharpure SJ, Prasath V, Kumar V. Chem. Commun. 2015; 51: 13623
  • 44 Liu H.-M, Lu W, Luo C.-P, Yang L. Tetrahedron Lett. 2016; 57: 4243
  • 45 Zhu W, Tong S, Zhu J, Wang M.-X. J. Org. Chem. 2019; 84: 2870
  • 46 Guo J.-Y, Zhang Z.-Y, Guan T, Mao L.-W, Ban Q, Zhao K, Loh T.-P. Chem. Sci. 2019; 10: 8792
  • 47 Guo J.-Y, Guan T, Tao J.-Y, Zhao K, Loh T.-P. Org. Lett. 2019; 21: 8395
    • 48a Yang L, Deng G, Wang D.-X, Huang Z.-T, Zhu J.-P, Wang M.-X. Org. Lett. 2007; 9: 1387
    • 48b Yang L, Wang D.-X, Zheng Q.-Y, Pan J, Huang Z.-T, Wang M.-X. Org. Biomol. Chem. 2009; 7: 2628
  • 49 Beltran F, Miesch L. Org. Lett. 2019; 21: 1569