Synthesis 2021; 53(01): 65-78
DOI: 10.1055/s-0040-1707385
short review

Synthetic Approaches to Non-Tropane, Bridged, Azapolycyclic Ring Systems Containing Seven-Membered Carbocycles

Aaron H. Shoemaker
,
Lafayette College, Department of Chemistry, 701 Sullivan Road, Easton, PA 18042, USA   Email: griffitd@lafayette.edu
› Author Affiliations
We thank the donors of the American Chemical Society Petroleum Research Fund (Grant No. 59202-UNI1) for financial support of our research program.


Dedicated in memory of Prof. Gilbert Stork

Abstract

This Short Review highlights various synthetic approaches to bridged azabicyclic ring systems containing seven-membered carbocyclic rings. Such ring systems are common to a number of biologically active natural products. The seven-membered ring in such systems is generally formed in one of four ways: 1) cyclization of an acyclic precursor; 2) ring expansion or rearrangement of a different ring size; 3) cycloaddition; and 4) use of a synthetic building block with the seven-membered ring already present. Representative examples of each approach from both total synthesis and methodological studies are discussed, with an emphasis on work published

in the last twenty years.

1 Introduction

2 Cyclization Reactions

3 Ring Expansions and Rearrangements

4 Cycloadditions

5 Strategies Involving Seven-Membered Ring Building Blocks

6 Conclusion



Publication History

Received: 01 July 2020

Accepted after revision: 14 August 2020

Article published online:
11 September 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
  • 2 Lounsmaa M, Tamminen T. In The Alkaloids: Chemistry and Pharmacology, Vol. 44. Cordell GA. Academic Press; New York: 1993. 1.
  • 3 Leonard J. Nat. Prod. Rep. 1999; 16: 319
  • 4 Ma X, Gang DR. Nat. Prod. Rep. 2004; 21: 752
  • 5 Kobayashi J, Morita H. Alkaloids Chem. Biol. 2003; 60: 165
  • 7 Ruggieri RB, McClure KF, Heathcock CH. J. Am. Chem. Soc. 1989; 111: 1530
  • 8 Heathcock CH, Kath JC, Ruggeri RB. J. Org. Chem. 1995; 60: 1120
  • 9 Kobayashi J, Kubota T. Nat. Prod. Rep. 2009; 26: 936
  • 10 Pollini GP, Benetti S, De Risi C, Zanirato V. Chem. Rev. 2006; 106: 2434
    • 11a Bennasar M.-L, Zulaica E, Sole D, Alonso S. Synlett 2008; 667
    • 11b Bennasar M.-L, Zulaica E, Sole D, Alonso S. Tetrahedron 2012; 68: 4641
  • 12 Joule JA. In Indoles, The Monoterpenoid Indole Aklaloids, Vol. 25. Saxton JE. Wiley; New York: 1983: 232
  • 13 Belanger G, Boudreault J, Levesque F. Org. Lett. 2011; 13: 6204
    • 14a Sasaki K, Hirata Y. Tetrahedron Lett. 1972; 1891
    • 14b Morita H, Yoshida N, Kobayashi J. Tetrahedron 2000; 56: 2641
    • 14c Zhan Z.-J, Zhang C.-R, Yue J.-M. Tetrahedron 2005; 61: 11038
  • 15 Yamamura S, Terada Y. Chem. Lett. 1976; 1381
  • 16 Yang Y, Haskins CW, Zhang W, Low PL, Dai M. Angew. Chem. Int. Ed. 2014; 53: 3922
  • 17 Kumarasamy Y, Cox PJ, Jaspars M, Nahar L, Sarker SD. Tetrahedron 2003; 59: 6403
  • 18 Yamashita T, Yamashita M, Aoyagi S. Tetrahedron Lett. 2011; 52: 4266
  • 19 Diethelm S, Carreira EM. J. Am. Chem. Soc. 2015; 137: 6084
  • 20 Huang Y.-M, Liu Y, Zheng C.-W, Jin Q.-W, Pan L, Pan R.-M, Liu J, Zhao G. Chem. Eur. J. 2016; 22: 18339
  • 21 Xue F, Lu H, He L, Li W, Zhang D, Liu X.-Y, Qin Y. J. Org. Chem. 2018; 83: 754
    • 22a Beshore DC, Smith III AB. J. Am. Chem. Soc. 2007; 129: 4148
    • 22b Beshore DC, Smith III AB. J. Am. Chem. Soc. 2008; 130: 13778
  • 23 Lee AS, Liau BB, Shair MD. J. Am. Chem. Soc. 2014; 136: 13442
    • 24a Beyersbergen van Henegouwen WG, Fieseler RM, Rutjes FP. J. T, Hiemstra H. Angew. Chem. Int. Ed. 1999; 38: 2214
    • 24b Beyersbergen van Henegouwen WG, Fieseler RM, Rutjes FP. J. T, Hiemstra H. J. Org. Chem. 2000; 65: 8317
    • 25a Granger BA, Jewett IT, Butler JD, Hua B, Knezevic CE, Parkinson EI, Hergenrother PJ, Martin SF. J. Am. Chem. Soc. 2013; 135: 12984
    • 25b Granger BA, Jewett IT, Butler JD, Martin SF. Tetrahedron 2014; 70: 4094
  • 26 Li JL, Shi HW, Wang Q, Chai YH, Yang J. Org. Lett. 2017; 19: 1497
  • 27 Feldman KS, Ngernmeesri P. Org. Lett. 2005; 7: 5449
  • 28 Bisai A, West SP, Sarpong R. J. Am. Chem. Soc. 2008; 130: 7222
  • 29 Cai L, Zhang K, Kwon O. J. Am. Chem. Soc. 2016; 138: 3298
  • 30 Williams DR, Mondal PK, Bawel SA, Nag PP. Org. Lett. 2014; 16: 1956
  • 31 Zaimoku H, Taniguchi T, Ishibashi H. Org. Lett. 2012; 14: 1656
  • 32 Lapinsky DJ, Bergmeier SC. Tetrahedron 2002; 58: 7109
  • 33 Nishimura T, Unni AK, Yokoshima S, Fukuyama T. J. Am. Chem. Soc. 2013; 135: 3243
  • 34 Zhao K, Yamashita K, Carpenter JE, Sherwood TC, Ewing WR, Cheng PT. W, Knowles RR. J. Am. Chem. Soc. 2019; 141: 8752
  • 35 Finn PB, Derstine BP, Sieburth SM. Angew. Chem. Int. Ed. 2016; 55: 2536
  • 36 Chaplinski V, de Meijere A. Angew. Chem. Int. Ed. 1996; 35: 413
  • 37 Wang Y.-F, Toh KK, Ng EP. J, Chiba S. J. Am. Chem. Soc. 2011; 133: 6411
  • 38 Barbe G, Fiset D, Charette AB. J. Org. Chem. 2011; 76: 5354
  • 39 Wang P, Gao Y, Ma D. J. Am. Chem. Soc. 2018; 140: 11608
  • 40 Yeom H.-S, Lee Y, Jeong J, So E, Hwang S, Lee J.-E, Lee SS, Shin S. Angew. Chem. Int. Ed. 2010; 49: 1611
  • 41 Overman LE, Humphreys PG, Welmaker GS. Org. React. 2011; 75: 747
  • 42 Yang S.-P, Yue J.-M. Org. Lett. 2004; 6: 1401
    • 43a Martin CL, Overman LE, Rohde JM. J. Am. Chem. Soc. 2008; 130: 7568
    • 43b Martin CL, Overman LE, Rohde JM. J. Am. Chem. Soc. 2010; 132: 4894
  • 44 Dunn TB, Ellis JM, Kofink CC, Manning JR, Overman LE. Org. Lett. 2009; 11: 5658
    • 45a Hudlicky T, Fan R, Reed JW. Org. React. 1992; 41: 1
    • 45b Krueger S, Gaich T. Beilstein J. Org. Chem. 2014; 10: 163
  • 46 Newcomb ET, Knutson PC, Pedersen BA, Ferreira EM. J. Am. Chem. Soc. 2016; 138: 108
  • 47 Simmons EM, Sarpong R. Org. Lett. 2006; 8: 2883
  • 48 Hamlin AM, de Jesus-Cortez F, Lapointe D, Sarpong R. Angew. Chem. Int. Ed. 2013; 52: 4854
  • 49 Hanessian S, Parthasarathy S, Mauduit M, Payza K. J. Med. Chem. 2003; 46: 34
    • 50a Cavitt MA, Phun LH, France S. Chem. Soc. Rev. 2014; 43: 804
    • 50b Grover HK, Emmett MR, Kerr MA. Org. Biomol. Chem. 2015; 13: 655
  • 51 Zhan Y, Liu T, Ren J, Wang Z. Chem. Eur. J. 2017; 23: 17862
  • 52 Katritzky AR, Dennis N. Chem. Rev. 1989; 89: 827
  • 53 Fu C, Lora N, Kirchhoefer PL, Lee DR, Altenhofer E, Barnes CL, Hungerford NL, Krenske EH, Harmata M. Angew. Chem. Int. Ed. 2017; 56: 14682
  • 54 He J, Chen Z, Li W, Low K.-H, Chiu P. Angew. Chem. Int. Ed. 2018; 57: 5253
  • 55 Halliday JI, Chebib M, Turner P, McLeod MD. Org. Lett. 2006; 8: 3399
  • 56 Puppala M, Murali A, Baskaran S. Chem. Commun. 2012; 48: 5778
  • 57 Trost BM, Bogdanowicz MJ. J. Am. Chem. Soc. 1973; 95: 5321
  • 58 Yoshii Y, Tokuyama H, Chen DY.-K. Angew. Chem. Int. Ed. 2017; 56: 12277
  • 59 Ito S, Ohtani H, Narita S, Honma H. Tetrahedron Lett. 1972; 2223
  • 60 Rosenblum M, Watkins JC. J. Am. Chem. Soc. 1990; 112: 6316
    • 61a Franck-Neumann M, Brion F, Martina D. Tetrahedron Lett. 1978; 5033
    • 61b Saha M, Bagby B, Nicholas KM. Tetrahedron Lett. 1986; 27: 915
  • 62 Phelan ZK, Weiss PS, He Y, Guan Z, Thamattoor DM, Griffith DR. J. Org. Chem. 2020; 85: 2202
  • 63 Denmark SE, Nguyen ST, Baiazitov RY. Heterocycles 2008; 76: 143
    • 64a O’Hagan D. Nat. Prod. Rep. 1997; 14: 637
    • 64b Fodor G, Dharanipragada R. Nat. Prod. Rep. 1994; 11: 443
    • 65a Bonjoch J, Diaba F, Bradshaw B. Synthesis 2011; 993
    • 65b Carroll FI, Melvin MS, Nuckols MC, Mascarella SW, Navarro HA, Thomas JB. J. Med. Chem. 2006; 49: 1781
    • 65c Gates M, Montzka TA. J. Med. Chem. 1964; 7: 127