Synthesis 2020; 52(22): 3374-3377
DOI: 10.1055/s-0040-1707353
psp
© Georg Thieme Verlag Stuttgart · New York

A Catalyst-Free, Temperature-Driven One-Pot Synthesis of 1-Adamantylhydrazine Hydrochloride

Anjana Delpe Acharige
,
Raul Neri
,
James Hodgson
,
Department of Chemistry, Kansas State University, CBC Building 201, Manhattan, KS, 66506-0401, USA   Email: [email protected]
› Author Affiliations
The work was supported by the National Institutes of Health (NIH) (NIH/DHHS 1R01Al121364-01A1).
Further Information

Publication History

Received: 30 June 2020

Accepted after revision: 23 July 2020

Publication Date:
25 August 2020 (online)


Abstract

1-Adamantylhydrazine can be a versatile intermediate for many biologically active compounds as adamantyl possesses a wide spectrum of medicinal properties. Described here is a detailed one-pot synthesis of 1-adamantylhydrazine, carried out on a milligram to gram scale, that steadily delivers a highly stable product used to carry out the synthesis of 1-(adamantan-1-yl)-1H-pyrazol-3-amine for bacterial studies. The reaction employs inexpensive, catalyst free, readily available starting materials. In the synthesis of 1-(adamantan-1-yl)-1H-pyrazol-3-amine, the use of a continuous extraction method allows for complete extraction of the target product into the organic layer and increases the overall percentage yield.

Supporting Information

 
  • References

  • 1 Fort RC. Adamantane: The Chemistry of Diamond Molecules. In Studies in Organic Chemistry, Vol. 5. Marcel Dekker; New York: 1976
  • 2 Stella V, Borchardt R, Hageman M, Oliyai R, Maag H, Tilley J. Prodrugs: Challenges and Rewards, Part 1. Springer; New York: 2007
  • 3 Davies WL, Grunert RR, Haff RF, McGahen JW, Neumayer EM, Paulshock M, Watts JC, Wood TR, Hermann EC, Hoffmann CE. Science 1964; 144: 862
  • 4 Khaziev R, Shtyrlin N, Pavelyev R, Nigmatullin R, Gabbasova R, Grishaev D, Shtro A, Galochkina A, Nikolaeva Y, Vinogradova T, Manicheva O, Dogonadze M, Gnezdilov O, Sokolovich E, Yablonskiy P, Balakin K, Shtyrlin Y. Lett. Drug Des. Discov. 2019; 1360
  • 5 Kukushkin ME, Skvortsov DA, Kalinina MA, Tafeenko VA, Burmistrov VV, Butov GM, Zyk NV, Majouga AG, Beloglazkina EK. Beilstein Arch. 2019; 2019143
  • 6 Augeri DJ, Robl JA, Betebenner DA, Magnin DR, Khanna A, Robertson JG, Wang A, Simpkins LM, Taunk P, Huang Q, Han S.-P, Abboa-Offei B, Cap M, Xin L, Tao L, Tozzo E, Welzel GE, Egan DM, Marcinkeviciene J, Chang SY, Biller SA, Kirby MS, Parker RA, Hamann LG. J. Med. Chem. 2005; 48: 5025
  • 7 Lamoureux G, Artavia G. Curr. Med. Chem. 2010; 17: 2967
  • 8 Shvekhgeimer M.-GA. Russ. Chem. Rev. 1996; 65: 555
  • 9 Li Q, Jin C, Petukhov PA, Rukavishnikov AV, Zaikova TO, Phadke A, LaMunyon DH, Lee MD, Keana JF. W. J. Org. Chem. 2004; 69: 1010
  • 10 Olah GA, Surya Prakash GK, Shih JG, Krishnamurthy VV, Mateescu GD, Liang G, Sipos G, Buss V, Gund TM, Ragué Schleyer PV. J. Am. Chem. Soc. 1985; 107: 2764
  • 11 Sunko D, Hiršl-Starčević S, Pollack S, Hehre W. J. Am. Chem. Soc. 1979; 101: 6163
  • 12 Haeili M, Moore C, Davis CJ. C, Cochran JB, Shah S, Shrestha TB, Zhang Y, Bossmann SH, Benjamin WH, Kutsch O, Wolschendorf F. Antimicrob. Agents Chemother. 2014; 58: 3727
  • 13 Wolschendorf F, Ackart D, Shrestha TB, Hascall-Dove L, Nolan S, Lamichhane G, Wang Y, Bossmann SH, Basaraba RJ, Niederweis M. Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 1621
  • 14 Dalecki AG, Malalasekera AP, Schaaf K, Kutsch O, Bossmann SH, Wolschendorf F. Metallomics 2016; 8: 412
  • 15 Wanka L, Iqbal K, Schreiner PR. Chem. Rev. 2013; 113: 3516
  • 16 Ohno M, Ishizaki K, Eguchi S. J. Org. Chem. 1988; 53: 1285
  • 17 Daeniker HU. Helv. Chim. Acta 1967; 50: 2008
  • 18 Butov GM, Mokhov VM. Russ. J. Org. Chem. 2018; 54: 1760
  • 19 Thomas T, Shetty B. (Pennwalt Corporation, Philadelphia, PA, USA) US3719710A, 1973
  • 20 Ji N, Meredith E, Liu D, Adams CM, Artman GD, Jendza KC, Ma F, Mainolfi N, Powers JJ, Zhang C. Tetrahedron Lett. 2010; 51: 6799