Synthesis 2020; 52(22): 3397-3405
DOI: 10.1055/s-0040-1707349
special topic
© Georg Thieme Verlag Stuttgart · New York

Controlling the All-trans Stereochemistry in Liquid Crystalline 4,4′-Dialkyl-[1,1′-bicyclohexyl] Compounds

Andreas Wächtler
a  Andreas Wächtler, Consultant, Am Hopfengarten 16, 64295 Darmstadt, Germany   Email: andreas.waechtler@external.merckgroup.com   Email: andreas.waechtler@t-online.de
,
b  Merck KGaA, Frankfurterstr. 250, 64293 Darmstadt, Germany   Email: matthias.bremer@merckgroup.com
,
David Maillard
b  Merck KGaA, Frankfurterstr. 250, 64293 Darmstadt, Germany   Email: matthias.bremer@merckgroup.com
,
Thomas Mohr
b  Merck KGaA, Frankfurterstr. 250, 64293 Darmstadt, Germany   Email: matthias.bremer@merckgroup.com
› Author Affiliations
Further Information

Publication History

Received: 12 May 2020

Accepted after revision: 24 June 2020

Publication Date:
05 August 2020 (online)


Published as part of the Special Topic Synthesis in Industry

Dedicated to the memory of Professor Dr. Dr. h. c. Michael Hanack (1931–2019). A.W. thanks him for 40 years of continuous encouragement.

Abstract

A good part of today’s liquid crystals (LCs) for display applications are derived from the Darzens–Nenitzescu reaction which, in a one-pot-process, yields 1,4-trans-acylphenylcyclohexanes from acid chlorides, benzene, and cyclohexene. A mechanism for this process is proposed based on quantum-chemical computations. The products of this reaction can be further elaborated to all-trans-4,4′-disubstituted-[1,1′-bicyclohexane] compounds, essential components in almost all fast switching LC-mixtures. An equilibration process involving carbo­cations is used to control the diastereomer distribution.

 
  • References

  • 1 Steinstraesser R. Z. Naturforsch., B 1972; 27: 774
    • 2a VanMeter JP, Klanderman BH. J. Am. Chem. Soc. 1973; 95: 26
    • 2b VanMeter JP, Klanderman BH. Mol. Cryst. Liq. Cryst. 1973; 22: 271
    • 2c VanMeter JP, Klanderman BH. Mol. Cryst. Liq. Cryst. 1973; 22: 285
    • 3a Anctil EJ.-G, Snieckus V. J. Organomet. Chem. 2002; 653: 150
    • 3b Quesnelle CA.. Snieckus V. Synthesis 2018; 50: 4395
    • 3c Quesnelle CA, Snieckus V. Synthesis 2018; 50: 4413
    • 4a Planer J. Justus Liebigs Ann. Chem. 1861; 118: 25
    • 4b Shenderovskyi VA, Trokhymchuk AD, Lisetski LN, Kozhushko BV, Gvozdovskyy IA. J. Mol. Liq. 2018; 267: 560
  • 5 Reinitzer F. Monatsh. Chem. 1888; 9: 421
  • 6 Deutscher HJ, Laaser B, Doelling W, Schubert H. J. Prakt. Chem. 1978; 320: 191
    • 7a Gray GW, Harrison KJ, Nash JA, Raynes EP. Electron. Lett. 1973; 9: 616
    • 7b Gray GW, Harrison KJ. GB 1433130, 1972
    • 8a Eidenschink R, Erdmann D, Krause J, Pohl L. Angew. Chem. Int. Ed. 1977; 16: 100
    • 8b Eidenschink R, Erdmann D, Krause J, Pohl L. Angew. Chem. Int. Ed. 1978; 17: 133
  • 9 Petrov VF, Torgova SI, Karamysheva LA, Takenaka S. Liq. Cryst. 1999; 26: 1141
    • 10a Gooch CH, Tarry HA. J. Phys. D: Appl. Phys. 1975; 8: 1575
    • 10b Pohl L, Eidenschink R, Del Pino F, Weber G. DE 3022818, 1986
  • 11 Wang Z. Comprehensive Organic Name Reactions and Reagents. Wiley; New York: 2009
    • 12a Nenitzescu CD, Gavat IG. Justus Liebigs Ann. Chem. 1935; 519: 260
    • 12b Johnson WS, Offenhauer RD. J. Am. Chem. Soc. 1945; 67: 1045
    • 12c Szczucinski T, Dabrowski R. Mol. Cryst. Liq. Cryst. 1982; 88: 55
  • 14 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision C.01 . Gaussian, Inc; Wallingford CT: 2016
  • 15 Becke AD. J. Chem. Phys. 1993; 98: 5648
  • 16 Møller C, Plesset MS. Phys. Rev. 1934; 46: 618
  • 17 Saunders M, Kronja O. In: Carbocation Chemistry . Olah GA, Prakash GK. S. Wiley; New York: 2004: 213
  • 18 Fukui K. Acc. Chem. Res. 1981; 14: 363
  • 19 Sugita K, Tamura S. Bull. Chem. Soc. Jpn. 1971; 44: 3388
  • 20 Bezborodov VS, Sasnouski GM, Lapanik VI. Liq. Cryst. 2000; 27: 935
  • 21 Du W, An Z, Xu M, Li Z, Ma D, Wang F, Kong F. Hecheng Huaxue 1997; 5: 205
  • 22 Kitamura M, Nishiuchi J, Fushimi N. PCT Int. Appl. WO 2007129707, 2007 ; Chem. Abstr. 2007, 147, 541583
  • 23 Xia Y.-T, He R, Wang J.-H, Song Y.-Y, Zhou Y.-B, Cui M. Yingyong Huaxue 2007; 24: 489
  • 24 Soderquist JA, Ramos-Veguilla J. e-EROS Encyclopedia of Reagents for Organic Synthesis. 2001
    • 25a Levine SG. J. Am. Chem. Soc. 1958; 80: 6150
    • 25b Badham NF. Tetrahedron 2004; 60: 11
    • 26a Xia Y.-T, He R, Zhou Y.-B, Song Y.-Y, Yi C.-H, Zhang J. Hecheng Huaxue 2005; 13: 594 Chem. Abstr. 2006, 145, 488947
    • 26b Goebel M, Hirschmann H, Lietzau L, Reiffenrath V, Schoen S, Schuler B. Eur. Pat. Appl EP2703472, 2014
    • 27a Fukui M, Goto Y, Ogawa T, Inoue H. JP 59070624A, 1984 ; Chem. Abstr. 1984, 101, 170780.
  • 28 Yang Y.-Z, Gao R.-X, Liu H, Li Q.-G, Liu Q.-F. Yingyong Huaxue 2004; 21: 971
    • 29a Dhar A, Vekariya RL, Bhadja P. Cogent Chem. 2018; 4: 1514686/1
    • 29b Busca G. Chem. Rev. 2007; 107: 5366
    • 30a Ono Y. Catal. Today 2003; 81: 3
    • 30b Singhal S, Agarwal S, Kumar A. J. Catal. Catal. 2015; 2: 1
    • 31a Notheisz F, Ocsko J, Bozoki GB, Bartok M. J. Chem. Soc., Faraday Trans. 1997; 93: 3807
    • 31b Bartok M, Notheisz F. React. Kinet. Catal. Lett. 1999; 68: 61
  • 32 Roebuck AK, Evering BL. J. Am. Chem. Soc. 1953; 75: 1631
    • 33a Kramer GM. J. Org. Chem. 1967; 32: 920
    • 33b Kramer GM. J. Org. Chem. 1967; 32: 1916
  • 34 Burwell RL. Jr, Scott RB, Maury LG, Hussey AS. J. Am. Chem. Soc. 1954; 76: 5822
    • 35a Kramer GM. Tetrahedron 1986; 42: 1071
    • 35b Rudakov ES, Volkova LK. Russ. Chem. Bull. 2008; 57: 1611
  • 36 Kramer GM, McVicker GB. Acc. Chem. Res. 1986; 19: 78
  • 37 Schwertfeger H, Fokin AA, Schreiner PR. Angew. Chem. Int. Ed. 2008; 47: 1022
  • 38 Fort RC, Schleyer P. vR. Chem. Rev. 1964; 64: 277
  • 39 Kuras M, Hala S, Landa S. Sb. Vys. Sk. Chem.-Technol. Praze, D: Technol. Paliv 1971; 2: 95
  • 40 Wächtler A, Schäfer R, Ambrosius K, Schuchmann D. DE 102009058572B4, 2017 , CN 102101815B, 2015; Chem. Abstr. 2016, 165, 93538.
  • 41 Wächtler A, Stumpf B, Schäfer R, Krattiger P, Maillard D. DE 102009058573 B4, 2015 , CN 102101813 B, 2015; Chem. Abstr. 2016, 165, 93539.
  • 42 Ksenofontov VA, Vasina TV, Zubarev YE, Kustov LM. React. Kinet. Catal. Lett. 2003; 80: 329
  • 43 Maillard D, Kriegbaum M, Waechtler A, Krattiger P, Schäfer R. DE 102009058574B, 2017 , CN102101820B, 2015; Chem. Abstr. 2016, 165: 93540.