Synthesis 2021; 53(04): 636-652
DOI: 10.1055/s-0040-1707327
short review

Recent Progress towards Organocatalyzed Asymmetric (Hetero)Arene Formation

Ke Xu
,
Ziyuan Wang
,
Tingshun Zhu
We acknowledge financial support from the ‘1000-Youth Talents Program’ and are grateful to Sun Yat-Sen University for providing a young teacher research grant.


Abstract

Owing to the importance of arene moieties in organic chemistry, methods for arene construction attract great attention. Besides the traditional substitution strategy from pre-existing arenes, the straightforward formation of arene cores can also provide significant shortcuts towards a wide array of target molecules with different substitution patterns. Among direct arene formation reactions, applying environmentally benign organocatalysis to access arene moieties continues to attract increasing attention. This short review provides a brief summary of recent progress on organocatalyzed de novo (hetero)arene formation and applications in enantioselective synthesis.

1 Introduction

2 Arene Formation with Non-Covalent Organocatalysts

2.1 Arene Formation with Acid Organocatalysts

2.2 Arene Formation with Base Organocatalysts

2.3 Arene Formation with Hydrogen-Bonding Organocatalysts

3 Arene Formation with Covalent Organocatalysts

3.1 Arene Formation with Lewis Base Organocatalysts

3.1.1 Arene Formation with Secondary Amine Organocatalysts

3.1.2 Arene Formation with Tertiary Amine, Tertiary Phosphine and Sulfide Organocatalysts

3.1.3 Arene Formation with N-Heterocyclic Carbene Organocatalysts

3.2 Arene Formation with Lewis Acid Organocatalysts

4 Conclusion



Publication History

Received: 30 August 2020

Accepted after revision: 15 September 2020

Article published online:
28 October 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Corbet J.-P, Mignani G. Chem. Rev. 2006; 106: 2651
    • 2b Ashenhurst JA. Chem. Soc. Rev. 2010; 39: 540
    • 2c Kozlowski MC, Morgan BJ, Linton EC. Chem. Soc. Rev. 2009; 38: 3193
    • 2d Bringmann G, Gulder T, Gulder TA. M, Breuning M. Chem. Rev. 2011; 111: 563
  • 3 Link A, Sparr C. Chem. Soc. Rev. 2018; 47: 3804
    • 4a Kotha S, Brahmachary E, Lahiri K. Eur. J. Org. Chem. 2005; 22: 4741
    • 4b Chopade PR, Louie J. Adv. Synth. Catal. 2006; 348: 2307
    • 4c Dominguez G, Perez-Castells J. Chem. Soc. Rev. 2011; 40: 3430
    • 4d Pla-Quintana A, Roglans A. Asian J. Org. Chem. 2018; 7: 1706
    • 4e Nagata T, Obora Y. Asian J. Org. Chem. 2020; 9: 1532
    • 5a Friedländer P. Ber. Dtsch. Chem. Ges. 1882; 15: 2572
    • 5b Hantzsch A. Liebigs Ann. Chem. 1882; 215: 1
    • 5c Fischer E, Jourdan F. Ber. Dtsch. Chem. Ges. 1883; 16: 2241
    • 5d Paal C. Ber. Dtsch. Chem. Ges. 1884; 17: 2756
    • 5e Knorr L. Ber. Dtsch. Chem. Ges. 1884; 17: 2863

    • For reviews on the synthesis of heteroarenes, see:
    • 5f Humphrey GR, Kuethe JT. Chem. Rev. 2006; 106: 2875
    • 5g Marco-Contelles J, Pérez-Mayoral E, Samadi A, Carreiras MC, Soriano E. Chem. Rev. 2009; 109: 2652
    • 5h Khaghaninejad S, Heravi MM. Adv. Heterocycl. Chem. 2014; 111: 95
    • 5i Deepthi A, Babu BP, Balachandran AL. Org. Prep. Proced. Int. 2019; 51: 409
  • 6 Liu L, Wei L, Zhang J. Adv. Synth. Catal. 2010; 352: 1920
  • 7 Ponra S, Vitale MR, Michelet V, Ratovelomanana-Vidal V. ARKIVOC 2016; (ii): 62
  • 8 Umeda R, Ikeda N, Ikeshita M, Sumino K, Nishimura S, Nishiyama Y. Bull. Chem. Soc. Jpn. 2017; 90: 213
  • 9 Saha S, Banerjee A, Maji MS. Org. Lett. 2018; 20: 6920
    • 11a Müller S, Webber MJ, List B. J. Am. Chem. Soc. 2011; 133: 18534
    • 11b Kötzner L, Webber MJ, Martínez A, Fusco CD, List B. Angew. Chem. Int. Ed. 2014; 53: 5202
    • 12a Das S, Majumdar N, De CK, Kundu DS, Döhring A, Garczynski A, List B. J. Am. Chem. Soc. 2017; 139: 1357
    • 12b Zhang L, Zhang J, Ma J, Cheng D.-J, Tan B. J. Am. Chem. Soc. 2017; 139: 1714
  • 13 Wang L, Zhong J, Lin X. Angew. Chem. Int. Ed. 2019; 58: 15824
  • 14 Kwon Y, Li J, Reid JP, Crawford JM, Jacob R, Sigman MS, Toste FD, Miller SJ. J. Am. Chem. Soc. 2019; 141: 6698
  • 15 Shao Y.-D, Dong M.-M, Wang Y.-A, Cheng P.-M, Wang T, Cheng D.-J. Org. Lett. 2019; 21: 4831
  • 16 Bisag GD, Pecorari D, Mazzanti A, Bernadi L, Fochi M, Bencivenni G, Bertuzzi G, Corti V. Chem. Eur. J. 2019; 25: 15694
    • 17a Zheng X, Lv L, Lu S, Wang W, Li Z. Org. Lett. 2014; 16: 5156
    • 17b Ao J, Liu Y, Jia S, Xue L, Li D, Tan Y, Qin W, Yan H. Tetrahedron 2018; 74: 433
    • 17c Sha H.-K, Liu F, Lu J, Liu Z.-Q, Hao W.-J, Tang J.-L, Tu S.-J, Jiang B. Green Chem. 2018; 20: 3476
    • 17d Ma C, Zhou J.-Y, Zhang Y.-Z, Mei G.-J, Shi F. Angew. Chem. Int. Ed. 2018; 57: 5398
    • 17e Zhao J.-J, Sun S.-B, He S.-H, Wu Q, Shi F. Angew. Chem. Int. Ed. 2015; 54: 5460
    • 18a Hauser FM, Rhee RP. J. Org. Chem. 1978; 43: 178
    • 18b Kraus GA, Sugimoto H. Tetrahedron Lett. 1978; 26: 2263
    • 18c Mal D, Pahari P. Chem. Rev. 2007; 107: 1892
    • 18d Rathwell K, Brimble MA. Synthesis 2007; 643
    • 19a Evans GE, Leeper FJ, Murphy JA, Staunton J. J. Chem. Soc., Chem. Commun. 1979; 205
    • 19b Dodd JH, Weinreb SM. Tetrahedron Lett. 1979; 20: 3593
    • 19c Donner CD. Tetrahedron 2013; 69: 3747

      Selected examples:
    • 20a Hauser FM, Combs DW. J. Org. Chem. 1980; 45: 4071
    • 20b Kraus GA, Cho H, Crowley S, Roth B, Sugimoto H, Prugh S. J. Org. Chem. 1983; 48: 3439
    • 20c Franck RW, Bhat V, Subramaniam CS. J. Am. Chem. Soc. 1986; 108: 2455
    • 20d Hauser FM, Dorsch WA, Mal D. Org. Lett. 2002; 4: 2237
    • 20e Mal D, Patra A, Roy H. Tetrahedron Lett. 2004; 45: 7895
    • 20f Tan NP. H, Donner CD. Tetrahedron 2009; 65: 4007
    • 20g Svenda J, Hill N, Myers AG. Proc. Natl. Acad. Sci. 2011; 108: 6709
    • 20h Liau BB, Milgram BC, Shair MD. J. Am. Chem. Soc. 2012; 134: 16765
    • 20i Magauer T, Smaltz DJ, Myers AG. Nat. Chem. 2013; 5: 886
  • 21 Poudel TN, Tamargo RJ. I, Cai H, Lee YR. Asian J. Org. Chem. 2018; 7: 985
  • 22 Lotter D, Castrogivanni A, Neuburger M, Sparr C. ACS Cent. Sci. 2018; 4: 656
  • 23 He X.-L, Zhao H.-R, Song X, Jiang B, Du W, Chen Y.-C. ACS Catal. 2019; 9: 4374
    • 24a Zhang Z, Schreiner PR. Chem. Soc. Rev. 2009; 38: 1187
    • 24b Chauhan P, Mahajan S, Kaya U, Hack D, Enders D. Adv. Synth. Catal. 2015; 357: 253
    • 24c Fang X, Wang C.-J. Chem. Commun. 2015; 51: 1185
    • 24d Sun Y.-L, Wei Y, Shi M. ChemCatChem 2017; 9: 718
  • 25 Zhao P, Beaudry CM. Angew. Chem. Int. Ed. 2014; 53: 10500
  • 26 Quinonero O, Jean M, Vanthuyne N, Roussel C, Bonne D, Constantieux T, Bressy C, Bugaut X, Rodriguez J. Angew. Chem. Int. Ed. 2016; 55: 1401
    • 27a Meyers AI, Wettlaufer DG. J. Am. Chem. Soc. 1984; 106: 1135
    • 27b Baker RW, Hambley TW, Turner P, Wallace BJ. Chem. Commun. 1996; 2571
    • 27c Nishii Y, Wakasugi K, Koga K, Tanabe Y. J. Am. Chem. Soc. 2004; 126: 5358
    • 27d Guo F, Konkol LC, Thomson RJ. J. Am. Chem. Soc. 2011; 133: 18
    • 27e Link A, Sparr C. Angew. Chem. Int. Ed. 2018; 57: 7136
  • 28 Raut VS, Jean M, Vanthuyne N, Roussel C, Constantieux T, Bressy C, Bugaut X, Bonne D, Rodriguez J. J. Am. Chem. Soc. 2017; 139: 2140
  • 29 Liu Y, Wu X, Li S, Xue L, Shan C, Zhao Z, Yan H. Angew. Chem. Int. Ed. 2018; 57: 6491
  • 30 Peng L, Li K, Xie C, Li S, Xu D, Qin W, Yan H. Angew. Chem. Int. Ed. 2019; 58: 17199
    • 31a Notz W, Tanaka F, Barbas CF. Acc. Chem. Res. 2004; 37: 580
    • 31b Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
    • 31c Kano T, Maruoka K. Chem. Commun. 2008; 44: 5465
    • 31d List B. Angew. Chem. Int. Ed. 2010; 49: 1730
    • 31e List B. Synlett 2001; 1675
  • 32 Magar KB. S, Xia L, Lee YR. Chem. Commun. 2015; 51: 8592
  • 33 Jiang L, Li H, Zhou J.-F, Yuan M.-W, Li H.-L, Chuan Y.-M, Yuan M.-L. Synth. Commun. 2018; 48: 336
  • 34 Li L, Seidel D. Org. Lett. 2010; 12: 5064
  • 35 Link A, Sparr C. Angew. Chem. Int. Ed. 2014; 53: 5458
    • 36a Lotter D, Neuburger M, Rickhaus M, Häussinger D, Sparr C. Angew. Chem. Int. Ed. 2016; 55: 2920
    • 36b Fäseke VC, Sparr C. Angew. Chem. Int. Ed. 2016; 55: 7261
  • 37 Hayashi Y, Takikawa A, Koshino S, Ishida K. Chem. Eur. J. 2019; 25: 10319
  • 38 Koshino S, Takikawa A, Ishida K, Taniguchi T, Monde K, Kwon E, Umemiya S, Hayashi Y. Chem. Eur. J. 2020; 26: 4524
  • 39 Fan M, Yan Z, Liu W, Liang Y. J. Org. Chem. 2005; 70: 8204
  • 40 Zheng J, Huang Y, Li Z. Org. Lett. 2013; 15: 5064
  • 41 Wang D, Tong X. Org. Lett. 2017; 19: 6392
    • 42a Liu X, An R, Zhang X, Luo J, Zhao X. Angew. Chem. Int. Ed. 2016; 55: 5846
    • 42b Luo J, Liu Y, Zhao X. Org. Lett. 2017; 19: 3434
    • 42c Luo J, Cao Q, Cao X, Zhao X. Nat. Commun. 2018; 9: 527
    • 42d Liu X, Liang Y, Ji J, Luo J, Zhao X. J. Am. Chem. Soc. 2018; 140: 4782
    • 42e Cao Q, Luo J, Zhao X. Angew. Chem. Int. Ed. 2019; 58: 1315
    • 42f Liang Y, Zhao X. ACS Catal. 2019; 9: 6896
    • 42g Liang Y, Ji J, Zhang X, Jiang Q, Luo J, Zhao X. Angew. Chem. Int. Ed. 2020; 59: 4959
    • 43a Hopkinson MN, Richter C, Schedler M, Glorius F. Nature 2014; 510: 485
    • 43b Mahatthananchai J, Bode JW. Acc. Chem. Res. 2014; 47: 696
    • 43c Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
    • 43d Menon RS, Biju AT, Nair V. Chem. Soc. Rev. 2015; 44: 5040
    • 43e Yetra SB, Patra A, Biju AT. Synthesis 2015; 47: 1357
    • 43f Wang MH, Scheidt KA. Angew. Chem. Int. Ed. 2016; 55: 14912
    • 43g Zhang C, Hooper JF, Lupton DW. ACS Catal. 2017; 7: 2583
    • 43h Mondal S, Yetra SR, Mukherjee S, Biju AT. Acc. Chem. Res. 2019; 52: 425
  • 44 Zhu T, Zheng P, Mou C, Yang S, Song B.-A, Chi YR. Nat. Commun. 2014; 5: 5027
  • 45 Zhu T, Mou C, Li B, Smetankova M, Song B.-A, Chi YR. J. Am. Chem. Soc. 2015; 137: 5658
  • 46 Jia Q, Wang J. Org. Lett. 2016; 18: 2212
  • 47 Zhang C.-L, Gao Z.-H, Liang Z.-Q, Ye S. Adv. Synth. Catal. 2016; 358: 2862
  • 48 Huang X, Zhu T, Huang Z, Zhang Y, Jin Z, Zanoni G, Chi YR. Org. Lett. 2017; 19: 6188
  • 49 Liu J, Das DK, Zhang G, Yang S, Zhang H, Fang X. Org. Lett. 2018; 20: 64
  • 50 Chen K.-Q, Luo Z, Gao Z.-H, Ye S. Chem. Eur. J. 2019; 25: 3253
  • 51 Ni Z, Mou C, Zhu X, Qi P, Yang S, Chi YR, Jin Z. Eur. J. Org. Chem. 2020; 492
  • 52 Zhou P, Wang J.-Y, Zhang T.-S, Li G, Hao W.-J, Tu S.-J, Jiang B. Chem. Commun. 2018; 54: 164
  • 53 Sharique M, Tambar UK. Chem. Sci. 2020; 11: 7239
  • 54 Liu P, Lei M, Ma L, Hu L. Synlett 2011; 1133
  • 55 Yu C, Lu J, Li T, Wang D, Qin B, Zhang H, Yao C. Synlett 2011; 2420
  • 56 Mou C, Wu J, Huang Z, Sun J, Jin Z, Chi YR. Chem. Commun. 2017; 53: 13359
  • 57 Sun K, Jin S, Fang S, Ma R, Zhang X, Gao M, Zhang W, Lu T, Du D. Org. Chem. Front. 2019; 6: 2291
  • 58 Candish L, Levens A, Lupton DW. Chem. Sci. 2015; 6: 2366
  • 59 Nakano Y, Lupton DW. Angew. Chem. Int. Ed. 2016; 55: 3135
  • 60 Zhao C, Guo D, Munkerup K, Huang K.-W, Li F, Wang J. Nat. Commun. 2018; 9: 611
  • 61 Zhu T, Liu Y, Smetankova M, Zhuo S, Mou C, Chai H, Jin Z, Chi YR. Angew. Chem. Int. Ed. 2019; 58: 15778
  • 62 Xu K, Li W, Zhu S, Zhu T. Angew. Chem. Int. Ed. 2019; 58: 17625
    • 63a Kirkham JD, Butlin RJ, Harrity JP. A. Angew. Chem. Int. Ed. 2012; 51: 6402
    • 63b Gao P, Fan M, Bai Z, Mei Y. Chin. J. Chem. 2015; 33: 479
    • 63c Reddy CR, Valleti RR, Dilipkumar U. Chem. Eur. J. 2016; 22: 2501
    • 64a Ratjen L, Gemmeren M, Pesciaioli F, List B. Angew. Chem. Int. Ed. 2014; 53: 8765
    • 64b Wang Q, Gemmeren M, List B. Angew. Chem. Int. Ed. 2014; 53: 13592
    • 64c Wang Q, List B. Synlett 2015; 26: 807
    • 64d Gatzenmeier T, Gemmeren M, Xie Y, Höfler D, Leutzsch M, List B. Science 2016; 351: 949
    • 64e Lee S, Bae HY, List B. Angew. Chem. Int. Ed. 2018; 57: 12162