Synlett 2021; 32(09): 875-884
DOI: 10.1055/s-0040-1707309
account

Catalytic Asymmetric Synthesis of P-Stereogenic Phosphines: Beyond Precious Metals

David S. Glueck
6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA   Email: glueck@dartmouth.edu
› Author Affiliations
I thank the US National Science Foundation (Grant Number CHE-1562037), the American Chemical Society Petroleum Research Fund (Grant Number 60035-ND3) and Dartmouth College for current support of these research projects.


In memory of Malcolm Green, with thanks for his enthusiasm and creativity

Abstract

Metal-catalyzed asymmetric synthesis of P-stereogenic phosphines is a potentially useful approach to a class of chiral ligands with valuable applications in asymmetric catalysis. We introduced this idea with chiral platinum and palladium catalysts, exploiting rapid pyramidal inversion in diastereomeric metal–phosphido complexes (ML*(PRR′)) to control phosphorus stereochemistry. This Account summarizes our attempts to develop related synthetic methods using earth-abundant metals, especially copper, in which weaker metal–ligand bonds and faster substitution processes were expected to result in more active catalysts. Indeed, precious metals were not required. Without any transition metals at all, we exploited related P-epimerization processes to prepare enantiomerically pure phosphiranes and secondary phosphine oxides (SPOs) from commercially available chiral epoxides.

1 Introduction

2 Copper-Catalyzed Phosphine Alkylation

3 Copper-Catalyzed Tandem Phosphine Alkylation/Arylation

4 Nickel-Catalyzed Phosphine Alkylation

5 Proton-Mediated P-Epimerization in Synthesis of Chiral Phosphiranes

6 Diastereoselective Synthesis of P-Stereogenic Secondary Phosphine Oxides (SPOs) from (+)-Limonene Oxide

7 Conclusions



Publication History

Received: 14 August 2020

Accepted after revision: 02 September 2020

Article published online:
13 October 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Phosphorus Ligands in Asymmetric Catalysis: Synthesis and Applications. Börner A. Wiley-VCH; Weinheim: 2008
    • 1b Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions. Blaser H.-U, Schmidt E. Wiley-VCH; Weinheim: 2004
    • 3a Lennon IC, Pilkington CJ. Synthesis 2003; 11: 1639
    • 3b Busacca CA, Senanayake CH. In Comprehensive Chirality. Carreira EM, Yamamoto H. Elsevier; Amsterdam: 2012: 167-216
  • 4 Grabulosa A. P-Stereogenic Ligands in Enantioselective Catalysis. RSC; Cambridge: 2011
    • 5a Kolodiazhnyi OI. Asymmetric Synthesis in Organophosphorus Chemistry: Synthetic Methods, Catalysis, and Applications. Wiley-VCH; Weinheim: 2016
    • 5b Dutartre M, Bayardon J, Juge S. Chem. Soc. Rev. 2016; 45: 5771
    • 6a Tang W, Zhang X. Angew. Chem. Int. Ed. 2002; 41: 1612
    • 6b Imamoto T, Tamura K, Zhang Z, Horiuchi Y, Sugiya M, Yoshida K, Yanagisawa A, Gridnev ID. J. Am. Chem. Soc. 2012; 134: 1754
    • 6c Xu G, Senanayake CH, Tang W. Acc. Chem. Res. 2019; 52: 1101
  • 7 Kovacik I, Wicht DK, Grewal NS, Glueck DS, Incarvito CD, Guzei IA, Rheingold AL. Organometallics 2000; 19: 950
  • 8 Glueck DS. Synlett 2007; 2627
  • 9 Baechler RD, Mislow K. J. Am. Chem. Soc. 1970; 92: 3090
  • 10 Rogers JR, Wagner TP. S, Marynick DS. Inorg. Chem. 1994; 33: 3104
    • 11a Glueck DS. Chem. Eur. J. 2008; 14: 7108
    • 11b Glueck DS. Coord. Chem. Rev. 2008; 252: 2171 ; erratum: Coord. Chem. Rev. 2011 , 255, 356
  • 12 Glueck DS. Top. Organomet. Chem. 2010; 31: 65
  • 13 For the most recent review of this area, see: Lemouzy S, Giordano L, Hérault D, Buono G. Eur. J. Org. Chem. 2020; 3351
  • 14 Anderson BJ, Glueck DS, DiPasquale AG, Rheingold AL. Organometallics 2008; 27: 4992
  • 15 Blank NF, McBroom KC, Glueck DS, Kassel WS, Rheingold AL. Organometallics 2006; 25: 1742
    • 16a Sovacool BK, Ali SH, Bazilian M, Radley B, Nemery B, Okatz J, Mulvaney D. Science 2020; 367: 30
    • 16b Hayler JD, Leahy DK, Simmons EM. Organometallics 2019; 38: 36
    • 16c Catalysis Without Precious Metals. Bullock RM. Wiley-VCH; Weinheim: 2010
  • 17 Glueck DS. Dalton Trans. 2008; 5276
  • 18 Cain MF, Hughes RP, Glueck DS, Golen JA, Moore CE, Rheingold AL. Inorg. Chem. 2010; 49: 7650
  • 19 Brunker TJ, Blank NF, Moncarz JR, Scriban C, Anderson BJ, Glueck DS, Zakharov LN, Golen JA, Sommer RD, Incarvito CD, Rheingold AL. Organometallics 2005; 24: 2730
  • 20 Blank NF, Moncarz JR, Brunker TJ, Scriban C, Anderson BJ, Amir O, Glueck DS, Zakharov LN, Golen JA, Incarvito CD, Rheingold AL. J. Am. Chem. Soc. 2007; 129: 6847
    • 21a Meyer C, Grutzmacher H, Pritzkow H. Angew. Chem., Int. Ed. Engl. 1997; 36: 2471
    • 21b Meyer C, Scherer M, Schönberg H, Rüegger H, Loss S, Gramlich V, Grützmacher H. Dalton Trans. 2006; 137

      For anionic terminal phosphido–copper complexes with additional Li–P interactions, see:
    • 22a Cowley AH, Giolando DM, Jones RA, Nunn CM, Power JM. J. Chem. Soc., Chem. Commun. 1988; 208
    • 22b Martin SF, Fishpaugh JR, Power JM, Giolando DM, Jones RA, Nunn CM, Cowley AH. J. Am. Chem. Soc. 1988; 110: 7226

      Solution molecular weight measurements suggested an equilibrium between dimeric [Cu(dppe)(PPh2)]2 and monomeric Cu(dppe)(PPh2):
    • 23a Van Koten G, Noltes JG, Spek AL. J. Organomet. Chem. 1978; 159: 441
    • 23b Greiser T, Weiss E. Chem. Ber. 1978; 111: 516
  • 24 The 31P NMR spectrum of the intermediate Cu(PPh3)(PPh2) was reported: Lemmen TH, Goeden GV, Huffman JC, Geerst RL, Caulton KG. Inorg. Chem. 1990; 29: 3680
  • 25 Laitar DS. PhD Thesis. Massachusetts Institute of Technology; USA: 2006
  • 26 Fortman GC, Slawin AM. Z, Nolan SP. Organometallics 2010; 29: 3966
    • 27a Gambarotta S, Strologo S, Floriani C, Chiesi-Villa A, Guastini C. Organometallics 1984; 3: 1444
    • 27b Ghilardi CA, Midollini S, Orlandini A. Inorg. Chem. 1982; 21: 4096
    • 27c Bianchini C, Ghilardi CA, Meli A, Midollini S, Orlandini A, Coan PS, Folting K, Huffman JC, Caulton KG. Organometallics 1989; 8: 2724
  • 28 Kourkine IV, Maslennikov SV, Ditchfield R, Glueck DS, Yap GP. A, Liable-Sands LM, Rheingold AL. Inorg. Chem. 1996; 35: 6708
  • 29 Gibbons SK, Valleau CR. D, Peltier JL, Cain MF, Hughes RP, Glueck DS, Golen JA, Rheingold AL. Inorg. Chem. 2019; 58: 8854
  • 30 Ward TR, Venanzi LM, Albinati A, Lianza F, Gerfin T, Gramlich V, Ramos Tombo GM. Helv. Chim. Acta 1991; 74: 983
    • 31a Burk MJ, Harlow RL. Angew. Chem., Int. Ed. Engl. 1990; 29: 1462
    • 31b Burk MJ, Feaster JE, Harlow RL. Tetrahedron: Asymmetry 1991; 2: 569
  • 32 Gibbons SK, Xu Z, Hughes RP, Glueck DS, Rheingold AL. Organometallics 2018; 37: 2159
    • 33a Scriban C, Glueck DS. J. Am. Chem. Soc. 2006; 128: 2788
    • 33b Scriban C, Glueck DS, Golen JA, Rheingold AL. Organometallics 2007; 26: 1788
  • 34 Xu Z, Cain MF, Rupert AV, Glueck DS, Golen JA, Rheingold AL. Tetrahedron: Asymmetry 2015; 26: 1459
  • 35 Imamoto T. Chem. Rec. 2016; 16: 2659
  • 36 Cain MF, Glueck DS, Golen JA, Rheingold AL. Organometallics 2012; 31: 775
  • 37 Ritter SK. Chem. Eng. News 2017; 95: 18
  • 38 Cain MF, Reynolds SC, Anderson BJ, Glueck DS, Golen JA, Moore CE, Rheingold AL. Inorg. Chim. Acta 2011; 369: 55
  • 39 Reynolds SC, Hughes RP, Glueck DS, Rheingold AL. Org. Lett. 2012; 14: 4238
  • 40 Anderson BJ, Guino-o MA, Glueck DS, Golen JA, DiPasquale AG, Liable-Sands LM, Rheingold AL. Org. Lett. 2008; 10: 4425
  • 41 Wang G, Guino-o MA, Glueck DS, Golen JA, Daley CJ. A, Rheingold AL. Dalton Trans. 2015; 44: 9943
  • 42 Wicht DK, Paisner SN, Lew BM, Glueck DS, Yap GP. A, Liable-Sands LM, Rheingold AL, Haar CM, Nolan SP. Organometallics 1998; 17: 652
  • 43 Wang G, Gibbons SK, Glueck DS, Sibbald C, Fleming JT, Higham LJ, Rheingold AL. Organometallics 2018; 37: 1760
    • 44a Hiney RM, Higham LJ, Muller-Bunz H, Gilheany DG. Angew. Chem. Int. Ed. 2006; 45: 7248
    • 44b Ficks A, Sibbald C, Ojo S, Harrington RW, Clegg W, Higham LJ. Synthesis 2013; 45: 265
  • 45 Mendelsohn, L. N. Senior Honors Thesis; Dartmouth College: USA, 2019.
  • 46 Gibbons SK, Hughes RP, Glueck DS, Royappa AT, Rheingold AL, Arthur RB, Nicholas AD, Patterson HH. Inorg. Chem. 2017; 56: 12809
  • 47 Gibbons, S. K. PhD Thesis; Dartmouth College: USA, 2019.
    • 48a Bader A, Nullmeyers T, Pabel M, Salem G, Willis AC, Wild SB. Inorg. Chem. 1995; 34: 384
    • 48b Albert J, Magali Cadena J, Granell J, Muller G, Panyella D, Sañudo C. Eur. J. Inorg. Chem. 2000; 1283
    • 48c Bader A, Pabel M, Willis AC, Wild SB. Inorg. Chem. 1996; 35: 3874
    • 48d Huang Y, Li Y, Leung P.-H, Hayashi T. J. Am. Chem. Soc. 2014; 136: 4865
  • 49 Chapp TW. PhD Thesis. Dartmouth College; USA: 2010
  • 50 Muldoon JA, Varga BR, Deegan MM, Chapp TW, Eördögh ÁM, Hughes RP, Glueck DS, Moore CE, Rheingold AL. Angew. Chem. Int. Ed. 2018; 57: 5047
    • 51a Quin LD. A Guide to Organophosphorus Chemistry. Wiley-Interscience; New York: 2000: 299-303
    • 51b Pietrusiewicz KM, Zablocka M. Chem. Rev. 1994; 94: 1375
  • 52 Heathcock CH, Von Geldern TW, Lebrilla CB, Maier WF. J. Org. Chem. 1985; 50: 968
  • 53 Ciriminna R, Lomeli-Rodriguez M, Demma Cara P, Lopez-Sanchez JA, Pagliaro M. Chem. Commun. 2014; 50: 15288
  • 54 Steiner D, Ivison L, Goralski CT, Appell RB, Gojkovic JR, Singaram B. Tetrahedron: Asymmetry 2002; 13: 2359
  • 55 Fox DL, Robinson AA, Frank JB, Salvatore RN. Tetrahedron Lett. 2003; 44: 7579
  • 56 Reynolds SC. PhD Thesis. Dartmouth College; USA: 2012
  • 57 Zimmerman AN, Xu RS, Reynolds SC, Shipp CA, Marshall DJ, Wang G, Blank NF, Gibbons SK, Hughes RP, Glueck DS, Balaich GJ, Rheingold AL. J. Org. Chem. 2020; DOI: in press; doi 10.1021/acs.joc.0c00974.
  • 58 Zimmerman AN. MSc Thesis. Dartmouth College; USA: 2020
  • 59 Sheldon RA. Green Chem. 2017; 19: 18