Synthesis 2021; 53(02): 338-343
DOI: 10.1055/s-0040-1707290
special topic
Functional Organic Molecules

Synthesis of Catenanes from a BMP32C10-Based Cryptand Tuned by the Linkage Length of Paraquat Salts

Feng-Zhi Yan
,
Yuan-Guang Shao
,
Zibin Zhang
,
Yan-Feng Shen
,
Xue-Chun Huang
,
Pei-Ling Zhang
,
Shijun Li
College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. of China   Email: l_shijun@hznu.edu.cn
› Author Affiliations
We thank the National Natural Science Foundation of China (21572042 and 21773052), the Changjiang Scholar Program of Chinese Ministry of Education and Innovative Research Team in Chinese University (IRT 1231), and the Opening Foundation of Collaborative Innovation Center for the Manufacture of Fluorine and Silicone Fine Chemicals and Materials (FSi2019A006) for financial support.


Abstract

A series of catenanes have been synthesized through olefin metathesis from a BMP32C10-based cryptand and paraquat guests attached with two terminal alkenes. Distribution of the catenane products can be significantly affected by the linkage length on the paraquat guests. In the presence of BMP32C10-based cryptand, the paraquat salt with a long linkage facilitates intramolecular olefin metathesis to release a [2]catenane as the sole catenation product, while the use of a paraquat salt with a shorter linkage leads to the simultaneous generation of [2]-, [3]-, and [4]-catenanes.

Supporting Information



Publication History

Received: 16 August 2020

Accepted after revision: 24 August 2020

Article published online:
05 October 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Molecular Catenanes, Rotaxanes and Knots . Sauvage J.-P, Dietrich-Buchecker C. Wiley-VCH; Weinheim: 1999
    • 1b Françisco MR, Stoddart JF. Chem. Rev. 1999; 99: 1643
    • 1c Kay ER, Leigh DA, Zerbetto F. Angew. Chem. Int. Ed. 2007; 46: 72
    • 1d Niu Z, Gibson HW. Chem. Rev. 2009; 109: 6024
    • 1e Forgan RS, Sauvage J.-P, Stoddart JF. Chem. Rev. 2011; 111: 5434
    • 1f Gil-Ramirez G, Leigh DA, Stephens J. Angew. Chem. Int. Ed. 2015; 54: 6110
    • 1g Xue M, Yang Y, Chi X, Yan X, Huang F. Chem. Rev. 2015; 115: 7398
    • 1h Lewis JE. M, Beer PD, Loeb SJ, Goldup SM. Chem. Soc. Rev. 2017; 46: 2577
    • 1i Lin W, Cen T.-Y, Wang S.-P, Zhang Z, Wu J, Huang J, Li S. Chin. Chem. Lett. 2018; 29: 1372
    • 1j Zhang Z, Sun K, Li S, Yu G. Chin. Chem. Lett. 2019; 30: 957
    • 1k Zhang Z, Sun K, Jin L, Xie C, Li S. Org. Chem. Front. 2020; 7: 1453
    • 1l Bak KM, Porfyrakis K, Davis JJ, Beer PD. Mater. Chem. Front. 2020; 4: 1052
    • 1m Gao W.-X, Feng H.-J, Guo B.-B, Lu Y, Jin G.-X. Chem. Rev. 2020; 120: 6288
    • 2a Collier CP, Mattersteig G, Wong EW, Luo Y, Beverly K, Sampaio J, Raymo FM, Stoddart JF, Heath JR. Science 2000; 289: 1172
    • 2b Leigh DA, Wong JK. Y, Dehez F, Zerbetto F. Nature 2003; 424: 174
    • 2c Xiao TX, Li SL, Zhang YJ, Lin C, Hu BJ, Guan XC, Yu YH, Jiang JL, Wang LY. Chem. Sci. 2012; 3: 1417
    • 2d Li S, Huang J, Cook TR, Pollock BJ, Kim H, Chi K.-W, Stang PJ. J. Am. Chem. Soc. 2013; 135: 2084
    • 2e Singh J, Kim DH, Kim EH, Singh N, Kim H, Hadiputra R, Jung J, Chi KW. Chem. Commun. 2019; 55: 6866
    • 2f Singh J, Kim DH, Kim E.-H, Kim H, Hadiputra R, Jung J, Chi K.-W. J. Am. Chem. Soc. 2020; 142: 9327
    • 2g Garci A, Beldjoudi Y, Kodaimati MS, Hornick JE, Nguyen MT, Cetin MM, Stern CL, Roy I, Weiss EA, Stoddart JF. J. Am. Chem. Soc. 2020; 142: 7956
    • 3a Lehn JM. Chem. Eur. J. 1999; 5: 2455
    • 3b Rowan SJ, Cantrill SJ, Cousins GR. L, Sanders JK. M, Stoddart JF. Angew. Chem. Int. Ed. 2002; 41: 898
    • 3c Corbett PT, Leclaire J, Vial L, West KR, Wietor JL, Sanders JK. M, Otto S. Chem. Rev. 2006; 106: 3652
    • 3d Lehn JM. Chem. Soc. Rev. 2007; 36: 151
    • 3e Otto S. Acc. Chem. Res. 2012; 45: 2200
    • 3f Cougnons FB. L, Sanders JK. M. Acc. Chem. Res. 2012; 45: 2211
    • 3g Belowich ME, Stoddart JF. Chem. Soc. Rev. 2012; 41: 2003
    • 3h Jin YH, Yu C, Denman RJ, Zhang W. Chem. Soc. Rev. 2013; 42: 6634
    • 3i Wilson A, Gasparini G, Matile S. Chem. Soc. Rev. 2014; 43: 1948
    • 4a Koshkakaryan G, Cao D, Klivansky LM, Teat SJ, Tran JL, Liu Y. Org. Lett. 2010; 12: 1528
    • 4b Wu YW, Tung ST, Lai CC, Liu YH, Peng SM, Chiu SH. Angew. Chem. Int. Ed. 2015; 54: 11745
    • 4c Li H, Zhang HC, Lammer AD, Wang M, Li XP, Lynch VM, Sessler JL. Nat. Chem. 2015; 7: 1003
    • 4d Shen LB, Cao N, Tong L, Zhang XJ, Wu GC, Jiao TY, Yin Q, Zhu JQ, Pan YJ, Li H. Angew. Chem. Int. Ed. 2018; 57: 16486
    • 5a Bryant WS, Jones JW, Mason PE, Guzei IA, Rheingold AL, Nagvekar DS, Gibson HW. Org. Lett. 1999; 1: 1001
    • 5b Huang F, Gibson HW, Bryant WS, Nagvekar DS, Fronczek FR. J. Am. Chem. Soc. 2003; 125: 9367
    • 5c Huang F, Switek KA, Zakharov LN, Fronczek FR, Slebodnick C, Lam M, Golen JA, Bryant WS, Mason PE, Rheingold AL, Ashraf-Khorassani M, Gibson HW. J. Org. Chem. 2005; 70: 3231
    • 5d Price TL, Slebodnick C, Gibson HW. Heteroat. Chem. 2017; 28: e21406
    • 5e Price TL, Gibson HW. J. Am. Chem. Soc. 2018; 140: 4455
    • 6a Huang FH, Slebodnick C, Switek KA, Gibson HW. Chem. Commun. 2006; 1929
    • 6b Huang FH, Slebodnick C, Mahan EJ, Gibson HW. Tetrahedron 2007; 63: 2875
    • 6c Zhang M, Zhu K, Huang F. Chem. Commun. 2010; 46: 8131
    • 6d Yan X, Wei P, Zhang M, Chi X, Liu J, Huang F. Org. Lett. 2011; 13: 6370
    • 6e Zhang M, Yan X, Huang F, Niu Z, Gibson HW. Acc. Chem. Res. 2014; 47: 1995
    • 7a Xu J.-F, Chen Y.-Z, Wu L.-Z, Tung C.-H, Yang Q.-Z. Org. Lett. 2014; 16: 684
    • 7b Han Y, Jiang Y, Chen C.-F. Tetrahedron 2015; 71: 503
    • 7c Wang Q, Cheng M, Xiong S, Hu X.-Y, Jiang J, Wang L, Pan Y. Chem. Commun. 2015; 51: 2667
    • 7d Cheng M, Zhang J, Ren X, Guo S, Xiao T, Hu X.-Y, Jiang J, Wang L. Chem. Commun. 2017; 53: 11838
    • 7e Ren X, Zhang J, Cheng M, Wang Q, Jiang J, Wang L. Tetrahedron Lett. 2018; 59: 2197
    • 8a Li S, Liu M, Zhang J, Zheng B, Zhang C, Wen X, Li N, Huang F. Org. Biomol. Chem. 2008; 6: 2103
    • 8b Li S, Liu M, Zhang J, Zheng B, Wen X, Li N, Huang F. Eur. J. Org. Chem. 2008; 6128
    • 8c Wang F, Zhou Q, Zhu K, Li S, Wang C, Liu M, Li N, Fronczek FR, Huang F. Tetrahedron 2009; 65: 1488
    • 8d Liu M, Li S, Zhang M, Zhou Q, Wang F, Hu M, Fronczek FR, Li N, Huang F. Org. Biomol. Chem. 2009; 7: 1288
    • 8e Li S, Zhu K, Zheng B, Wen X, Li N, Huang F. Eur. J. Org. Chem. 2009; 1053
    • 8f Liu M, Li S, Hu M, Wang F, Huang F. Org. Lett. 2010; 12: 760
    • 8g Ye Y, Wang S.-P, Zhu B, Cook TR, Wu J, Li S, Stang PJ. Org. Lett. 2015; 17: 2804
    • 9a Iwamoto H, Takizawa W, Itoh K, Hagiwara T, Tayama E, Hasegawa E, Haino T. J. Org. Chem. 2013; 78: 5205
    • 9b Quaglio D, Zappia G, De Paolis E, Balducci S, Botta B, Ghirga F. Org. Chem. Front. 2018; 5: 3022
    • 10a Weck M, Mohr B, Sauvage JP, Grubbs RH. J. Org. Chem. 1999; 64: 5463
    • 10b Iwamoto H, Itoh K, Nagamiya H, Fukazawa Y. Tetrahedron Lett. 2003; 44: 5773
    • 10c Guidry EN, Cantrill SJ, Stoddart JF, Grubbs RH. Org. Lett. 2005; 7: 2129
    • 10d Fuller A.-ML, Leigh DA, Lusby PJ, Slawin AM. Z, Walker DB. J. Am. Chem. Soc. 2005; 127: 12612
    • 10e Zhu X.-Z, Chen C.-F. J. Am. Chem. Soc. 2005; 127: 13158
    • 10f Lankshear MD, Evans NH, Bayly SR, Beer PD. Chem. Eur. J. 2007; 13: 3861
    • 10g Li S, Liu M, Zheng B, Zhu K, Wang F, Li N, Zhao X.-L, Huang F. Org. Lett. 2009; 11: 3350
    • 10h Gibbs-Hall IC, Vermeulen NA, Dale EJ, Henkelis JJ, Blackburn AK, Barnes JC, Stoddart JF. J. Am. Chem. Soc. 2015; 137: 15640
    • 10i Iwamoto H, Tafuku S, Sato Y, Takizawa W, Katagiri W, Tayama E, Hasegawa E, Fukazawa Y, Haino T. Chem. Commun. 2016; 52: 319