Synthesis 2021; 53(02): 267-278
DOI: 10.1055/s-0040-1707269
short review

Deoxygenative Transition-Metal-Promoted Reductive Coupling and Cross-Coupling of Alcohols and Epoxides

Chandrasekhar Bandari
,
Kenneth M. Nicholas
Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA   Email: [email protected]
› Author Affiliations
We are grateful to the National Science Foundation for support of our research in this area (CHE-1566213).


Abstract

The prospective utilization of abundant, CO2-neutral, renewable feedstocks is driving the discovery and development of new reactions that refunctionalize oxygen-rich substrates such as alcohols and polyols through C–O bond activation. In this review, we highlight the development of transition-metal-promoted reactions of renewable alcohols and epoxides that result in carbon–carbon bond-formation. These include reductive self-coupling reactions and cross-coupling reactions of alcohols with alkenes and arene derivatives. Early approaches to reductive couplings employed stoichiometric amounts of low-valent transition-metal reagents to form the corresponding hydrocarbon dimers. More recently, the use of redox-active transition-metal catalysts together with a reductant has enhanced the practical applications and scope of the reductive coupling of alcohols. Inclusion of other reaction partners with alcohols such as unsaturated hydrocarbons and main-group organometallics has further expanded the diversity of carbon skeletons accessible and the potential for applications in chemical synthesis. Catalytic reductive coupling and cross-coupling reactions of epoxides are also highlighted. Mechanistic insights into the means of C–O activation and C–C bond formation, where available, are also highlighted.

1 Introduction

2 Stoichiometric Reductive Coupling of Alcohols

3 Catalytic Reductive Coupling of Alcohols

3.1 Heterogeneous Catalysis

3.2 Homogeneous Catalysis

4 Reductive Cross-Coupling of Alcohols

4.1 Reductive Alkylation

4.2 Reductive Addition to Olefins

5 Epoxide Reductive Coupling Reactions

6 Conclusions and Future Directions



Publication History

Received: 24 June 2020

Accepted after revision: 04 August 2020

Publication Date:
07 October 2020 (online)

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Jana R, Pathak TP, Sigman MS. Chem. Rev. 2011; 111: 1417
    • 2b Everson DA, Weix DJ. J. Org. Chem. 2014; 79: 4793
    • 3a Ogba OM, Warner NC, O’Leary DJ, Grubbs RH. Chem. Soc. Rev. 2018; 47: 4510
    • 3b Deraedt C, d’Halluin M, Astruc D. Eur. J. Inorg. Chem. 2013; 4881
    • 5a Finiels A, Fajula F, Hulea V. Catal. Sci. Technol. 2014; 4: 2412
    • 5b Agapie T. Coord. Chem. Rev. 2011; 255: 861
    • 6a Walker TW, Motagamwala AH, Dumesic JA, Huber GW. J. Catal. 2019; 369: 518
    • 6b Sudarsanam P, Zhong R, Van den Bosch S, Coman SM, Parvulescu VI, Sels BF. Chem. Soc. Rev. 2018; 47: 8349
  • 7 Boucher-Jacobs C, Nicholas KM. Top. Curr. Chem. 2014; 353: 163
    • 8a Donnelly LJ, Thomas SP, Love JB. Chem. Asian J. 2019; 14: 3782
    • 8b Tshibalonza NN, Monbaliu J.-CM. Green Chem. 2020; 22: 4801
  • 9 Gabriëls D, Hernández WY, Sels B, Van Der Voort P, Verberckmoes A. Catal. Sci. Technol. 2015; 5: 3876
    • 10a Holmes M, Schwartz LA, Krische MJ. Chem. Rev. 2018; 118: 6026 ; and references cited therein
    • 10b Doerksen RS, Meyer CC, Krische MJ. Angew. Chem. Int. Ed. 2019; 58: 14055
  • 11 van Tamelen EE, Schwartz MA. J. Am. Chem. Soc. 1965; 87: 3277
    • 12a van Tamelen EE, Akermark B, Sharpless KB. J. Am. Chem. Soc. 1969; 91: 1552
    • 12b Sharpless KB, van Tamelen EE, van Tamelen EE. J. Am. Chem. Soc. 1968; 90: 209
  • 13 McMurry JE. Acc. Chem. Res. 1974; 7: 281
  • 14 McMurry JE, Silvestri M. J. Org. Chem. 1975; 40: 2687
  • 15 Sato M, Oshima K. Chem. Lett. 1982; 11: 157
  • 16 Alper H, Salisova M. Tetrahedron Lett. 1980; 21: 801
  • 17 Prieto C, González Delgado JA, Arteaga JF, Jaraíz M, López-Pérez JL, Barrero AF. Org. Biomol. Chem. 2015; 13: 3462
  • 18 Xiang Y.-G, Wang X.-W, Zheng X, Ruan Y.-P, Huang P.-Q. Chem. Commun. 2009; 45: 7045
  • 19 Suga T, Shimazu S, Ukaji Y. Org. Lett. 2018; 20: 5389
    • 20a Teobold BJ. Tetrahedron 2002; 58: 4133
    • 20b Nicholas KM. Acc. Chem. Res. 1987; 20: 207
    • 20c Green JR, Nicholas KM. Propargylic Coupling Reactions via Bimetallic Alkyne Complexes: The Nicholas Reaction. In Organic Reactions, Vol. 103b, Chap. 3. John Wiley& Sons, Inc.; 2020: 934
    • 21a Melikyan GG, Khan MA, Nicholas KM. Organometallics 1995; 14: 2170
    • 21b Melikyan GG, Combs RC, Lamirand J, Khan M, Nicholas KM. Tetrahedron Lett. 1994; 35: 363
    • 22a Melikyan GG. Acc. Chem. Res. 2015; 48: 1065
    • 22b Melikyan GG. Ligand-Based Organometallic Radical Chemistry: An Emerging Interdisciplinary Field. In Frontiers in Organometallic Chemistry, Chap. 7. Cato MA. Nova Science Publishers; New York: 2006: 155
  • 23 Tsodikov MV, Kugel VY, Yandieva FA, Mordovin VP, Gekhman AE, Moiseev II. Pure Appl. Chem. 2004; 76: 1769
  • 24 Tsodikov MV, Yandieva FA, Kugel VY, Chistyakov AV, Gekhman AE, Moiseev II. Catal. Lett. 2008; 121: 199
  • 25 Glebov LS, Zaikin VG, Mikaya AI, Kliger GA. Pet. Chem. 2014; 54: 296
  • 26 Onodera G, Nishibayashi Y, Uemura S. Organometallics 2006; 25: 35
  • 27 Kasner GR, Boucher-Jacobs C, McClain JM, Nicholas KM. Chem. Commun. 2016; 52: 7257
  • 28 Boucher-Jacobs C, Liu P, Nicholas KM. Organometallics 2018; 37: 2468
  • 29 Larsen DB, Petersen AR, Dethlefsen JR, Teshome A, Fristrup P. Chem. Eur. J. 2016; 22: 16621
  • 30 Steffensmeier E, Nicholas KM. Chem. Commun. 2018; 54: 790
  • 31 Steffensmeier E, Swann MT, Nicholas KM. Inorg. Chem. 2019; 58: 844
  • 32 Griffin SE, Schafer LL. Inorg. Chem. 2020; 59: 5256
  • 33 Cao Z.-C, Yu D.-G, Zhu R.-Y, Wei J.-B, Shi Z.-J. Chem. Commun. 2015; 51: 2683
  • 34 Yu D.-G, Wang X, Zhu R.-Y, Luo S, Zhang X.-B, Wang B.-Q, Wang L, Shi Z.-J. J. Am. Chem. Soc. 2012; 134: 14638
  • 35 Yu D.-G, Shi Z.-J. Angew. Chem. Int. Ed. 2011; 50: 7097
  • 36 Yang B, Wang Z.-X. J. Org. Chem. 2020; 85: 4772
  • 37 Suga T, Ukaji Y. Org. Lett. 2018; 20: 7846
  • 38 Zheng X, Dai X.-J, Yuan H.-Q, Ye C.-X, Ma J, Huang P.-Q. Angew. Chem. Int. Ed. 2013; 52: 3494
  • 39 Schwartz LA, Holmes M, Brito GA, Gonçalves TP, Richardson J, Ruble JC, Huang K.-W, Krische MJ. J. Am. Chem. Soc. 2019; 141: 2087
  • 40 Bandari C, Nicholas KM. J. Org. Chem. 2020; 85: 3320
    • 41a Botubol-Ares JM, Durán-Peña MJ, Hanson JR, Hernández-Galán R, Collado IG. Synthesis 2018; 50: 2163
    • 41b McCallum T, Wu X, Lin S. J. Org. Chem. 2019; 84: 14369
  • 42 Nugent WA, RajanBabu TV. J. Am. Chem. Soc. 1988; 110: 8561
  • 43 RajanBabu TV, Nugent WA. J. Am. Chem. Soc. 1989; 111: 4525
  • 44 RajanBabu TV, Nugent WA. J. Am. Chem. Soc. 1994; 116: 986
  • 45 Gansauer A, Barchuk A, Keller F, Schmitt M, Grimme S, Gerenkamp M, Muck-Lichtenfeld C, Daasbjerg K, Svith H. J. Am. Chem. Soc. 2007; 129: 1359
    • 46a Gansäuer A, Rinker B, Pierobon M, Grimme S, Gerenkamp M, Mück-Lichtenfeld C. Angew. Chem. Int. Ed. 2003; 42: 3687
    • 46b Lin Z, Lan Y, Wang C. Org. Lett. 2020; 22: 3509
    • 46c Gansäuer A, Pierobon M, Bluhm H. Angew. Chem. Int. Ed. 1998; 37: 101
    • 47a Gansäuer A, Lauterbach T, Geich-Gimbel D. Chem. Eur. J. 2004; 10: 4983
    • 47b Fernández-Mateos A, Madrazo SE, Teijón PH, González RR. J. Org. Chem. 2009; 74: 3913
  • 48 Gonzalez-Delgado JA, Arteaga JF. Eur. J. Org. Chem. 2019; 7864
  • 49 Barrero AF, Quílez del Moral JF, Sánchez EM, Arteaga JF. Org. Lett. 2006; 8: 669
  • 50 Reichard HA, McLaughlin M, Chen MZ, Micalizio GC. Eur. J. Org. Chem. 2010; 391
    • 51a Standley EA, Tasker SZ, Jensen KL, Jamison TF. Acc. Chem. Res. 2015; 48: 1503
    • 51b Molinaro C, Jamison TF. J. Am. Chem. Soc. 2003; 125, 8076
    • 51c Montgomery J. Angew. Chem. Int. Ed. 2004; 43: 3890
  • 52 Beaver MG, Jamison TF. Org. Lett. 2011; 13: 4140