Synthesis 2020; 52(24): 3764-3780
DOI: 10.1055/s-0040-1707255
short review

Synthetically Important Ring-Opening Acylations of Alkoxybenzenes

The author would like to thank the Science and Engineering Research Board, India (DST-SERB; grant number PDF/2018/000072/CS) for financial support.


Dedicated to Professor Yashwant D. Vankar on the occasion of his 70th birthday

Abstract

Cyclic ketones, anhydrides, lactams and lactones are a particular class of molecules that are often used in synthesis, wherein their electrophilic properties are leveraged to enable facile Friedel–Crafts ring openings through nucleophilic attack at the carbonyl sp2 centre. The use of electron-rich alkoxybenzenes as nucleophiles has also become important since the discovery of the Friedel–Crafts reaction. As a result, various isomeric alkoxybenzenes are used for preparing starting materials in target-oriented syntheses. This review covers the instances of different alkoxybenzenes that are used as nucleophiles in ring-opening acylations with carbonyl-containing cyclic electrophiles, for the construction of important building blocks for multistep transformations. This review summarizes the ring-opening functionalization of three- to seven-membered molecular rings with alkoxybenzenes in a Friedel–Crafts fashion. Sometimes the rings need subtle or considerable activation by the help of Lewis acid(s), followed by nucleophilic attack. This review is aimed to be a summary of the important acylations of electron-rich alkoxybenzenes by nucleophilic ring-opening of cyclic molecules. The works cited employ a wide range of conditions and differently substituted substrates for target-oriented syntheses.

1 Introduction and Scope

2 Arenes for Acylative Ring Opening

2.1 Three-Membered Rings: Ring Opening of Oxirane-2,3-dione

2.2 Four-Membered Rings

2.2.1 Ring Opening of Cyclobutanones

2.2.2 Ring Opening of β-Lactams

2.2.3 Ring Opening of β-Lactone

2.3 Five-Membered Rings

2.3.1 Ring Opening of Phthalimides

2.3.2 Ring Opening of γ-Lactones

2.3.3 Ring Opening of Anhydrides

2.4 Six-Membered Rings

2.5 Seven-Membered Rings

3 Conclusion



Publication History

Received: 18 June 2020

Accepted after revision: 20 July 2020

Publication Date:
08 September 2020 (online)

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Haworth RD. J. Chem. Soc. 1932; 1125
    • 1b Agranat I, Shih Y.-S. J. Chem. Educ. 1976; 53: 488

    • Portrait sources:
    • 1c Charles Friedel: https://en.wikipedia.org/wiki/Charles_Friedel#/media/File:Charles_Friedel_1890s2.jpg (accessed Aug 25, 2020).
    • 1d James Mason Crafts (accessed Aug 25, 2020): https://en.wikipedia.org/wiki/James_Crafts#/media/File:Crafts_James_Mason.jpg
    • 1e Robert Downs Haworth: Jones E. Biogr. Mem. Fellows R. Soc. 1991; 37: 264
    • 2a Friedel C, Crafts JM. Compt. Rend. 1877; 84: 1392
    • 2b Friedel C, Crafts JM. Compt. Rend. 1877; 84: 1450
  • 4 Lewis Acids in Organic Synthesis . Yamamoto H. Wiley–VCH; Weinheim: 2000

    • For reviews, see:
    • 5a Calloway NO. Chem. Rev. 1935; 17: 327
    • 5b Poulsen TB, Jørgensen KA. Chem. Rev. 2008; 108: 2903
    • 5c You S.-L, Cai Q, Zeng M. Chem. Soc. Rev. 2009; 38: 2190
    • 5d Rueping M, Nachtsheim BJ. Beilstein J. Org. Chem. 2010; 6: 1 ; DOI: 10.3762/bjoc.6.6
    • 5e Sartori G, Maggi R. Chem. Rev. 2011; 111: PR181
    • 5f Heravi MM, Zadsirjan V, Saedia P, Momeni T. RSC Adv. 2018; 8: 40061
    • 5g Nayak YN, Nayak S, Nadaf YF, Shetty NS, Gaonkar SL. Lett. Org. Chem. 2020; 17: 491
    • 5h Bandini M. J. Am. Chem. Soc. 2010; 132: 7821
    • 6a Stanković S, D’hooghe M, Catak S, Eum H, Waroquier M, Speybroeck V, Kimpe ND, Ha H.-J. Chem. Soc. Rev. 2012; 41: 643
    • 6b Ahmad S, Yousaf M, Mansha A, Rasool N, Zahoor AF, Hafeez F, Rizvi SM. A. Synth. Commun. 2016; 46: 1397
    • 6c Dwivedi SK, Gandhi S, Rastogi N, Singh VK. Tetrahedron Lett. 2007; 48: 5375
    • 6d Karbalaei M, Seifi M, Sheibani H. Res. Chem. Intermed. 2015; 41: 4679

      Reports on non-transitional metallo-arenes:
    • 7a Nenajdenko VG, Karpov AS, Balenkova ES. Tetrahedron: Asymmetry 2001; 12: 2517
    • 7b Uemura M, Yorimitsu H, Oshima K. Chem. Commun. 2006; 4726
    • 7c Erdélyi B, Szabé A, Seres G, Birincsik L, Ivanics J, Szatzkerd G, Poppe L. Tetrahedron: Asymmetry 2006; 17: 268
    • 7d Wu Y.-C, Zhu J. Org. Lett. 2009; 11: 5558
    • 7e Miao L, DiMaggio SC, Trudell ML. Synthesis 2010; 91
    • 7f Yoon D.-H, Kang P, Lee WK, Kim Y, Ha H.-J. Org. Lett. 2012; 14: 429
    • 7g Ertürk E, Tezeren MA, Atalar T, Tilki T. Tetrahedron 2012; 68: 6463
    • 7h White DE, Tadross PM, Lu Z, Jacobsen EN. Tetrahedron 2014; 70: 4165
    • 7i Yang D, Liang N. Org. Biomol. Chem. 2014; 12: 2080
    • 7j Dilek O, Tezeren MA, Tilki T, Ertürk E. Tetrahedron 2018; 74: 268
    • 7k Liu L, Lee W, Yuan M, Acha C, Geherty MB, Williams B, Gutierrez O. Chem. Sci. 2020; 11: 3146

      Reports on transition metallo-arenes:
    • 8a Tian X, Maurya R, Königsberger K, Hudlicky T. Synlett 1995; 1125
    • 8b Asano M, Inoue M, Katoh T. Synlett 2005; 2599
    • 8c Wang Z, Kuninobu Y, Kanai M. J. Am. Chem. Soc. 2015; 137: 6140
    • 8d Tan Y, Yao Y, Yang W, Lin Q, Huang G, Tan M, Chen S, Chen D, Yanga D. Adv. Synth. Catal. 2020; 362: 139
    • 8e Wang F, Yu S, Li X. Chem. Soc. Rev. 2016; 45: 6462
    • 8f Yus M. Pure Appl. Chem. 2003; 75: 1453
    • 9a Johnson WS, Christiansen RG, Ireland RE. J. Am. Chem. Soc. 1957; 79: 1995
    • 9b Kamal A, Tamboli JR, Ramaiah MJ, Adil SF, Rao GK, Viswanath A, Mallareddy A, Pushpavalli SN. C. V. L, Pal-Bhadra M. ChemMedChem 2012; 7: 1453
    • 9c Mihigo SO, Mammo W, Bezabih M, Andrae-Marobela K, Abegaz BM. Bioorg. Med. Chem. 2010; 18: 2464
    • 9d Mehl L.-M, Maier ME. J. Org. Chem. 2017; 82: 9844
    • 9e Asakawa T, Sagara H, Kanakogi M, Hiza A, Tsukaguchi Y, Ogawa T, Nakayama M, Ouchi H, Inai M, Kan T. Org. Process Res. Dev. 2019; 23: 595
    • 9f Fernandes C, Carraro ML, Ribeiro J, Araújo J, Tiritan ME, Pinto MM. M. Molecules 2019; 24: 791
    • 9g Anjaneyulu B, Govindachari CR. Tetrahedron Lett. 1969; 2847
    • 9h Vasiljevik T, Groer CE, Lehner K, Navarro H, Prisinzano TE. J. Nat. Prod. 2014; 77: 1817
    • 9i Corson TW, Basavarajappa HD, Seo S.-Y, Lee B, Fei X. US Patent 60060241, 2016
    • 9j Bennett GJ, Lee H.-H. J. Chem. Soc., Perkin Trans. 1 1986; 633
    • 9k Alonso R, Brossi A. Tetrahedron Lett. 1988; 29: 735
    • 10a Revesz L, Bollbuck B, Buhl T, Dawson J, Feifel R, Heng R, Hiestand P, Sparrer H, Schlapbach A, Waelchli R, Loetscher P. Lett. Drug Des. Discov. 2006; 3: 689
    • 10b Brown MF, Bahnck KB, Blumberg LC, Brissette WH, Burrell SA, Driscoll JP, Fedeles F, Fisher MB, Foti RS, Gladue RP, Guzman-Martinez A, Hayward MM, Lira PD, Lillie BM, Lu Y, Lundquist GD, McElroy EB, McGlynn MA, Paradis TJ, Poss CS, Roache JH, Shavnya A, Shepard RM, Trevena KA, Tylaska LA. Bioorg. Med. Chem. 2007; 17: 3109
    • 10c Blumberg LC, Brown MF, Hayward MM, Lundquist GD. Jr, Poss CS, Shavnya A. Int. Pat WO03035627A1, 2001
    • 12a Carreira EM, Fessard TC. Chem. Rev. 2014; 114: 8257
    • 12b Hazelarda D, Compain P. Org. Biomol. Chem. 2017; 15: 3806
  • 13 Kanie M, Yoshimura T, Matsuo J.-i. Synthesis 2018; 50: 548
  • 14 Hofer U. Nat. Rev. Microbiol. 2018; 16: 394
    • 15a Boonstra E, de Kleijn R, Colzato LS, Alkemade A, Forstmann BU, Nieuwenhuis S. Front. Psychol. 2015; 6: 1520 ; DOI: 10.3389/fpsyg.2015.01520
    • 15b Diana M, Quílez J, Rafecas M. J. Funct. Foods 2014; 10: 407
    • 15c Ngo D.-H, Vo TS. Molecules 2019; 24: 2678
  • 16 Kano S, Ebata T, Shibuya S. J. Chem. Soc., Perkin Trans. 1 1980; 2105
  • 17 Anderson KW, Tepe JJ. Tetrahedron 2002; 58: 8475
  • 18 Chianelli D, Kim Y.-C, Lvovskiy D, Webb TR. Bioorg. Med. Chem. 2003; 11: 5059
  • 19 Lange J, Bissember AC, Banwell MG, Cade IA. Aust. J. Chem. 2011; 64: 454
  • 20 Kraus GA, Wang X. Tetrahedron Lett. 1999; 40: 8513
  • 21 Schuda P. Top. Curr. Chem. 1980; 91: 75
  • 22 Arief MM. H, Shaaban AF, Essawy SA, Khalil AA. M. J. Chem. Soc. Pakistan 1987; 9: 295
  • 23 Nagashima H, Kubo Y, Kawamura M, Nishikata T, Motoyama Y. Tetrahedron 2011; 67: 7667
    • 24a Xu C, Bai X, Xu J, Ren Y, Xing Z, Li J, Wang J, Shi J, Yu L, Wang Y. RSC Adv. 2017; 7: 4763
    • 24b Mehl L.-M, Maier ME. J. Org. Chem. 2017; 82: 9844
    • 24c Shang G, Liu D, Allen SE, Yang Q, Zhang X. Chem. Eur. J. 2007; 13: 7780
    • 24d Mahmoodi NO, Jazayri M. Synth. Commun. 2001; 31: 1467
    • 24e Pelter A, Ward RS, Rao RR. Tetrahedron 1985; 41: 2933
    • 24f Thomas DG, Nathan AH. J. Am. Chem. Soc. 1948; 70: 331
    • 24g Li R.-J, Xu J.-H, Yin Y.-C, Wirth N, Ren J.-M, Zeng B.-B, Yu H.-L. New J. Chem. 2016; 40: 8928
    • 24h Fieser LF, Hershberg EB. J. Am. Chem. Soc. 1936; 58: 2314
  • 25 Bugle RC, Wheeler DM. S, Wheeler MM, Hohman JR. J. Org. Chem. 1981; 46: 3915
  • 26 Onoue K.-i, Shintou T, Zhang CS, Itoh I. Chem. Lett. 2006; 35: 22
  • 27 Drakulić BJ, Stanojković TP, Žižak ŽS, Dabović MM. Eur. J. Med. Chem. 2011; 46: 3265
  • 28 Yadav JS, Gayathri KU, Reddy BV. S, Prasad AR. Synlett 2009; 43
  • 29 Kluza J, Marchetti P, Bailly C. Lamellarin Alkaloids: Structure and Pharmacological Properties. In Modern Alkaloids: Structure, Isolation, Synthesis and Biology. Fattorusso E, Taglialatela-Scafati O. Wiley–VCH; Weinheim: 2007
  • 30 Schroeder RL, Goyal N, Bratton M, Townley I, Pham NA, Tram P, Stone T, Geathers J, Nguyen K. Sridhar, J. Bioorg. Med. Chem. Lett. 2016; 26: 3187
  • 31 Dong X, Fu J, Yin X, Cao S, Li X, Lin L, Huyiligeqi, Ni J. Phytother. Res. 2016; 30: 1207
  • 32 Zhang Y, Luo Y.-H, Piao X.-J, Shen G.-N, Wang J.-R, Feng Y.-C, Li J.-Q, Xu W.-T, Zhang Y, Zhang T, Wang C.-Y, Jin C.-H. Bioorg. Med. Chem. 2019; 27: 1577
  • 33 Kagayama K, Morimoto T, Nagata S, Katoh F, Zhang X, Inoue N, Hashino A, Kageyama K, Shikaura J, Niwa T. Bioorg. Med. Chem. 2009; 17: 6959
  • 34 Akine S, Kusama D, Takatsuki Y, Nabeshim T. Tetrahedron Lett. 2015; 56: 4880
    • 35a Zhao L, Li Z, Thomas T. Chem. Lett. 2010; 39: 658
    • 35b Jiang Y, Chen C.-F. Eur. J. Org. Chem. 2011; 6377
  • 36 Pozzo J.-L, Clavier GM, Colomes M, Bouas-Laurent H. Tetrahedron 1997; 53: 6377
  • 37 Veerman J, van den Bergh T, Orrling KM, Jansen C, Cos P, Maes L, Chatelain E, Ioset J.-R, Edink EE, Tenor H, Seebeck T, de Esch I, Leurs R, Sterk GJ. Bioorg. Med. Chem. 2016; 24: 1573
  • 38 Sagadevan A, Hwang KC, Su M.-D. Nat. Commun. 2017; 8: 1812
  • 39 Wen S, Chen C, Du S, Zhang Z, Huang Y, Han Z, Dong X.-Q, Zhang X. Org. Lett. 2017; 19: 6474
    • 40a Yuan F, Zhou S, Yang Y, Guo M, Tang X, Wang G. Org. Chem. Front. 2018; 5: 3306
    • 40b Kondratov IS, Bugera MY, Tolmachova NA, Posternak GG, Daniliuc CG, Haufe G. J. Org. Chem. 2015; 80: 12258
    • 40c Li D, Mao T, Huang J, Zhu Q. J. Org. Chem. 2018; 83: 10445
    • 40d Lemos A, Lemaire C, Luxen A. Adv. Synth. Catal. 2019; 361: 1500
  • 41 Liu Y, Yan S, Li J, Shan H. Polym. Bull. 2018; 75: 3667
    • 42a Kraikin VA, Yangirov TA, Fatykhov AA, Ivanova VP, Sedova EA, Gileva NG, Ionova IA. High Perform. Polym. 2017; 29: 677
    • 42b Yangirov TA, Fatykhov AA, Sedova EA, Khalilov LM, Meshcheryakova ES, Ivanov SP, Salazkin SN, Kraikin VA. Tetrahedron 2019; 75: 1282
  • 43 Tan H, Liu H, Chen X, Chen H, Qiu S. Org. Biomol. Chem. 2015; 13: 9977
    • 44a Fredenhagen A, Hug P, Sauter H, Peter HH. J. Antibiot. 1995; 48: 199
    • 44b Singh SB, Fink DL, Quamina DS, Pelaez F, Teran A, Felock P, Hazuda DJ. Tetrahedron Lett. 2002; 43: 2351
    • 44c Pontius A, Krick A, Kehraus S, Brun R, König GM. J. Nat. Prod. 2008; 71: 1579
    • 44d Li RJ, Zhu RX, Li YY, Zhou JC, Zhang JZ, Wang S, Ye JP, Wang YH, Morris-Natschke SL, Lee KH, Lou HX. J. Nat. Prod. 2013; 76: 1700
  • 45 Shinozaki Y, Ohkubo K, Fukuzumi S, Sugawa K, Otsuki J. Chem. Eur. J. 2016; 22: 1165
  • 46 Gautam RK, Kannan S, Saharia GS. J. Indian Chem. Soc. 1982; 59: 378
  • 47 Guariento S, Karawajczyk A, Bull JA, Marchini G, Bielska M, Iwanowa X, Bruno O, Fossa P, Giordanetto F. Bioorg. Med. Chem. Lett. 2017; 27: 24
  • 48 Jiang X, Liu S, Yang S, Jing M, Xu L, Yu P, Wang Y, Yeung Y.-Y. Org. Lett. 2018; 20: 3259
    • 49a Hu Y, Yin X, Chen Z, Dong X.-Q, Zhang X. Org. Chem. Front. 2018; 5: 2000
    • 49b Yin C, Dong X.-Q, Zhang X. Adv. Synth. Catal. 2018; 360: 4319
  • 50 Estopiñá-Durán S, Donnelly LJ, Mclean EB, Hockin BM, Slawin AM. Z, Taylor JE. Chem. Eur. J. 2019; 25: 3950
    • 51a McCubbin JA, Krokhin OV. Tetrahedron Lett. 2010; 51: 2447
    • 51b McCubbin JA, Hosseini H, Krokhin OV. J. Org. Chem. 2010; 75: 959
    • 51c Wolf E, Richmond E, Moran J. Chem. Sci. 2015; 6: 2501
    • 51d Ricardo CL, Mo X, McCubbin JA, Hall DG. Chem. Eur. J. 2015; 21: 4218
    • 51e Mo X, Yakiwchuk J, Dansereau J, McCubbin JA, Hall DG. J. Am. Chem. Soc. 2015; 137: 9694
    • 52a Chevallet P, Orzalesi H. Bull. Soc. Chim. Fr. 1985; 947
    • 52b Bantick JR, Rothstein E. J. Chem. Soc. C 1971; 2512
  • 53 Orzalesi H, Chevallet P, Bergé G, Boucard M, Serrano J.-J, Privat G, Andary C. Eur. J. Med. Chem. 1978; 13: 259