Synlett 2021; 32(04): 373-377
DOI: 10.1055/s-0040-1707252
cluster
Radicals – by Young Chinese Organic Chemists
© Georg Thieme Verlag Stuttgart · New York

Dual Photoredox/Palladium-Catalyzed C–H Acylation of 2-Arylpyridines with Oxime Esters

Bin-Qing He
,
Yuan Gao
,
Peng-Zi Wang
,
Hong Wu
,
Hong-Bin Zhou
,
Xiao-Peng Liu
,
We are grateful to the NNSFC (21971081 and 91856119), the Science and Technology Department of Hubei Province (2017AHB047), and the Program of Introducing Talents of Discipline to Universities of China (111 Program, B17019) for support of this research.
Further Information

Publication History

Received: 24 June 2020

Accepted after revision: 26 July 2020

Publication Date:
21 August 2020 (online)


Published as part of the Cluster Radicals – by Young Chinese Organic Chemists

Abstract

An unprecedented dual photoredox/palladium-catalyzed iminyl-radical-mediated C–C bond cleavage and directed ortho C–H acylation of 2-arylpyridines by using oxime esters is described. Oxime esters can serve as efficient acyl sources through formation of the corresponding acyl radicals by photoredox-catalyzed iminyl-radical-mediated C–C bond cleavage. This redox-neutral protocol features excellent regioselectivity, a broad substrate scope, and good functional-group tolerance with respect to both components, giving a broad range of aryl ketones with generally good yields.

Supporting Information

 
  • References and Notes

    • 1a Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 1b Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 1c Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
    • 1d Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org. Chem. Front. 2015; 2: 1107
    • 1e He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
    • 1f Jiao K.-J, Zhao C.-Q, Fang P, Mei T.-S. Tetrahedron Lett. 2017; 58: 797
    • 1g Timsina YN, Gupton BF, Ellis KC. ACS Catal. 2018; 8: 5732
    • 1h Wang S, Yan F, Wang L, Zhu L. Youji Huaxue 2018; 38: 291
    • 1i Hagui W, Doucet H, Soulé J.-F. Chem 2019; 5: 2006
    • 3a Cheng J, Pan C, Jia X. Synthesis 2012; 44: 677
    • 3b Leitch JA, Frost CG. Synthesis 2018; 50: 2693
    • 4a Jia X, Zhang S, Wang W, Luo F, Cheng J. Org. Lett. 2009; 11: 3120
    • 4b Baslé O, Bidange J, Shuai Q, Li C.-J. Adv. Synth. Catal. 2010; 352: 1145
    • 4c Xiao F, Chen S, Huang H, Deng G.-J. Eur. J. Org. Chem. 2015; 7919
    • 4d Zhang D, Zhaorigetu B, Bao Y.-S. J. Phys. Chem. C 2015; 119: 20426
    • 4e Hu Q, Liu X, Huang F, Wang F, Li Q, Zhang W. Catal. Commun. 2018; 113: 27
    • 5a Xiao F, Shuai Q, Zhao F, Basle O, Deng G, Li C.-J. Org. Lett. 2011; 13: 1614
    • 5b Kishore R, Lakshmi Kantam M, Yadav J, Sudhakar M, Laha S, Venugopal A. J. Mol. Catal. A: Chem. 2013; 379: 213
    • 6a Zhang Q, Yang F, Wu Y. Chem. Commun. 2013; 49: 6837
    • 6b Zhang G, Sun S, Yang F, Zhang Q, Kang J, Wu Y, Wu Y. Adv. Synth. Catal. 2015; 357: 443
    • 7a Khemnar AB, Bhanage BM. Eur. J. Org. Chem. 2014; 6746
    • 7b Khatun N, Banerjee A, Santra SK, Behera A, Patel BK. RSC Adv. 2014; 4: 54532
    • 7c Zhang Q, Wang Y, Yang T, Li L, Li D. Tetrahedron Lett. 2016; 57: 90
  • 8 Zhou W, Li H, Wang L. Org. Lett. 2012; 14: 4594
    • 9a Liu X, Yi Z, Wang J, Liu G. RSC Adv. 2015; 5: 10641
    • 9b Fan W, Su J, Feng B. Synlett 2015; 26: 2033
    • 9c Li M, Ge H. Org. Lett. 2010; 12: 3464
    • 9d Lu J, Zhang H, Chen X, Liu H, Jiang Y, Fu H. Adv. Synth. Catal. 2013; 355: 529
    • 9e Hossian A, Manna MK, Manna K, Jana R. Org. Biomol. Chem. 2017; 15: 6592
    • 10a Guin S, Rout SK, Banerjee A, Nandi S, Patel BK. Org. Lett. 2012; 14: 5294
    • 10b Wu Y, Choy PY, Mao F, Kwong FY. Chem. Commun. 2013; 49: 689
    • 10c Xu Z, Xiang B, Sun P. RSC Adv. 2013; 3: 1679
  • 11 Han S, Sharma S, Park J, Kim M, Shin Y, Mishra NK, Bae JJ, Kwak JH, Jung YH, Kim IS. J. Org. Chem. 2014; 79: 275
    • 12a Xu X, Wan X, Geng Y, Zhang J, Xu H. Youji Huaxue 2011; 31: 453
    • 12b Chen J.-R, Hu X.-Q, Lu L.-Q, Xiao W.-J. Chem. Soc. Rev. 2016; 45: 2044
    • 12c Xiong T, Zhang Q. Chem. Soc. Rev. 2016; 45: 3069
    • 12d Kärkäs MD. ACS Catal. 2017; 7: 4999
    • 12e Davies J, Morcillo SP, Douglas JJ, Leonori D. Chem. Eur. J. 2018; 24: 12154
    • 12f Jiang H, Studer A. CCS Chem. 2019; 1: 38
    • 12g Yu X.-Y, Chen J.-R, Xiao W.-J. Chem. Rev. 2020; DOI: in press; 10.1021/acs.chemrev.0c00030.
  • 13 Yu X.-Y, Zhao Q.-Q, Chen J, Xiao W.-J, Chen J.-R. Acc. Chem. Res. 2020; 53: 1066
    • 14a Yu X.-Y, Chen J.-R, Wang P.-Z, Yang M.-N, Liang D, Xiao W.-J. Angew. Chem. Int. Ed. 2018; 57: 738
    • 14b Yu X.-Y, Zhao Q.-Q, Chen J, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2018; 57: 15505
    • 14c Chen J, He B.-Q, Wang P.-Z, Yu X.-Y, Zhao Q.-Q, Chen J.-R, Xiao W.-J. Org. Lett. 2019; 21: 4359
  • 16 Zhou W.-J, Zhang Y.-H, Cao G.-M, Liu H.-D, Yu D.-G. Youji Huaxue 2017; 37: 1322
    • 17a Fan X, Lei T, Chen B, Tung CH, Wu L.-Z. Org. Lett. 2019; 21: 4153
    • 17b Cheng Y.-Y, Lei T, Su L, Fan X, Chen B, Tung C.-H, Wu L.-Z. Org. Lett. 2019; 21: 8789
    • 18a Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
    • 18b Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052 DOI: 10.1038/s41570-017-0052
    • 18c Kancherla R, Muralirajan K, Sagadevan A, Rueping M. Trends in Chemistry 2019; 1: 510
    • 19a Zhou C, Li P, Zhu X, Wang L. Org. Lett. 2015; 17: 6198
    • 19b Xu N, Li P, Xie Z, Wang L. Chem. Eur. J. 2016; 22: 2236
  • 20 Kalyani D, McMurtrey KB, Neufeldt SR, Sanford MS. J. Am. Chem. Soc. 2011; 133: 18566
    • 21a Zhou W.-J, Zhang Y.-H, Gui Y.-Y, Sun L, Yu D.-G. Synthesis 2018; 50: 3359
    • 21b Zhou W.-J, Jiang Y.-X, Chen L, Liu K.-X, Yu D.-G. Youji Huaxue 2020; DOI: in press; 10.6023/cjoc202004045.
  • 22 See the Supporting Information for more details.
    • 23a Anand M, Sunoj RB, Schaefer HF. J. Am. Chem. Soc. 2014; 136: 5535
    • 23b Liao G, Yin X.-S, Chen K, Zhang Q, Zhang S.-Q, Shi B.-F. Nat. Commun. 2016; 7: 12901
    • 23c Zhan B.-B, Fan J, Jin L, Shi B.-F. ACS Catal. 2019; 9: 3298
    • 23d Guin S, Dolui P, Zhang X, Pual S, Singh VK, Pradhan S, Chandrashekar HB, Anjana SS, Paton RS, Maiti D. Angew. Chem. Int. Ed. 2019; 58: 5633
    • 24a Wang G.-W, Yuan T.-T. J. Org. Chem. 2010; 75: 476
    • 24b Chen X, Goodhue CE, Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 12634
    • 24c Yang Y.-F, Cheng G.-J, Liu P, Leow D, Sun T.-Y, Chen P, Zhang X.-H, Yu J.-Q, Wu Y.-D, Houk KN. J. Am. Chem. Soc. 2014; 136: 344
    • 25a Dupont J, Consorti CS, Spencer J. Chem. Rev. 2005; 105: 2527
    • 25b Hickman AJ, Sanford MS. Nature 2012; 484: 177
  • 26 1-(2-Pyridin-2-ylphenyl)ethanone (3aa); Typical Procedure A 10 mL, flame-dried, round-bottomed Schlenk flask equipped with a magnetic stirrer bar was charged with 1a (0.2 mmol, 31.04 mg), 2a (0.4 mmol, 57.26 mg), AgOTf (0.5 mmol, 128.47 mg), fac-Ir(ppy)3 (0.002 mmol, 1.31 mg), and Pd(TFA)2 (0.02 mmol, 6.65 mg). The flask was evacuated and backfilled with Ar three times, and the mixture was irradiated with 7 W blue LED strips until the reaction was complete (24–48 h; TLC). The mixture was then poured into a separatory funnel containing 20 mL of sat. aq NaCl and washed with CH2Cl2 (20 mL). The organic layers were separated, dried (Na2SO4), filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography (silica gel) to give a colorless oil; yield: 29.6 mg (75%). 1H NMR (400 MHz, CDCl3): δ = 8.64 (d, J = 4.4 Hz, 1 H), 7.78 (t, J = 7.7 Hz, 1 H), 7.60 (dd, J = 12.9, 7.7 Hz, 2 H), 7.53 (t, J = 6.9 Hz, 2 H), 7.47 (d, J = 8.1 Hz, 1 H), 7.27 (t, J = 5.9 Hz, 1 H), 2.23 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 204.1, 157.6, 149.2, 141.5, 138.8, 136.7, 130.3, 129.1, 128.6, 127.6, 122.5, 122.3, 30.5. HRMS (EI): m/z [M + H]+ calcd for C13H12NO: 198.0913; found: 198.0918.