Synthesis 2018; 50(17): 3359-3378
DOI: 10.1055/s-0037-1610222
special topic
© Georg Thieme Verlag Stuttgart · New York

Merging Transition-Metal Catalysis with Photoredox Catalysis: An Environmentally Friendly Strategy for C–H Functionalization

Wen-Jun Zhou*
a  College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang 641112, P. R. of China   Email: chemzhwj@126.com
b  Key Laboratory of Green Chemistry & Technology of the Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China   Email: dgyu@scu.edu.cn
,
Yi-Han Zhang
b  Key Laboratory of Green Chemistry & Technology of the Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China   Email: dgyu@scu.edu.cn
,
Yong-Yuan Gui
b  Key Laboratory of Green Chemistry & Technology of the Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China   Email: dgyu@scu.edu.cn
,
Liang Sun
b  Key Laboratory of Green Chemistry & Technology of the Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China   Email: dgyu@scu.edu.cn
,
b  Key Laboratory of Green Chemistry & Technology of the Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China   Email: dgyu@scu.edu.cn
› Author Affiliations
We thank the National Natural Science Foundation of China (21772129), the “973” project from the MOST of China (2015CB856600), Sichuan Provincial Department of Education (17ZA0219), Neijiang Normal University (KF10076), and the Fundamental Research Funds for Central Universities for financial support.
Further Information

Publication History

Received: 04 June 2018

Accepted after revision: 04 July 2018

Publication Date:
08 August 2018 (eFirst)

Published as part of the Special Topic Photoredox Methods and their Strategic Applications in Synthesis

These authors contributed equally.

Abstract

Transition-metal-catalyzed C–H functionalization is already a useful tool in organic synthesis, whilst the rapid development of photoredox catalysis provides new pathways for C–H functionalization with high selectivity and efficiency under mild reaction conditions. In this review, recent advances in C–H functionalization through merging transition­-metal catalysis with photoredox catalysis are discussed.

1 Introduction

2 Merging Nickel Catalysis with Photoredox Catalysis

3 Merging Palladium Catalysis with Photoredox Catalysis

4 Merging Cobalt Catalysis with Photoredox Catalysis

5 Merging Photoredox Catalysis with Other Transition-Metal Catalysis­

6 Conclusions

 
  • References

  • 1 Metal-Catalyzed Cross-Coupling Reactions and More . de Meijere A. Bräse S. Oestreich M. Wiley-VCH; Weinheim: 2014
    • 2a Miyaura N. Suzuki A. Chem. Rev. 1995; 95: 2457
    • 2b Cahiez G. Moyeux A. Chem. Rev. 2010; 110: 1435
    • 2c Jana R. Pathak TP. Sigman MS. Chem. Rev. 2011; 111: 1417
    • 2d Beletskaya IP. Ananikov VP. Chem. Rev. 2011; 111: 1596
    • 2e Cherney AH. Kadunce NT. Reisman SE. Chem. Rev. 2015; 115: 9587
    • 2f Ruiz-Castillo P. Buchwald SL. Chem. Rev. 2016; 116: 12564
    • 3a Shilov AE. Shul’pin GB. Chem. Rev. 1997; 97: 2879
    • 3b Ritleng V. Sirlin C. Pfeffer M. Chem. Rev. 2002; 102: 1731
    • 3c Li BJ. Yang SD. Shi ZJ. Synlett 2008; 949
    • 3d Chen X. Engle KM. Wang DH. Yu JQ. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 3e Lyons TW. Sanford MS. Chem. Rev. 2010; 110: 1147
    • 3f Colby DA. Bergman RG. Ellman JA. Chem. Rev. 2010; 110: 624
    • 3g Chen Z. Wang B. Zhang J. Yu W. Liu Z. Zhang Y. Org. Chem. Front. 2015; 2: 1107
    • 3h He G. Wang B. Nack WA. Chen G. Acc. Chem. Res. 2016; 49: 635
    • 3i He J. Wasa M. Chan KS. L. Shao O. Yu JQ. Chem. Rev. 2017; 117: 8754
    • 3j Yi H. Zhang GT. Wang HM. Huang ZY. Wang J. Singh AK. Lei AW. Chem. Rev. 2017; 117: 9016
    • 4a Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 4b Xuan J. Lu LQ. Chen JR. Xiao WJ. Eur. J. Org. Chem. 2013; 6755
    • 4c Hopkinson MN. Sahoo B. Li JL. Glorius F. Chem. Eur. J. 2014; 20: 3874
    • 4d Megger E. Chem. Commun. 2015; 51: 3290
    • 4e Fabry DC. Rueping M. Acc. Chem. Res. 2016; 49: 1969
    • 4f Tellis JC. Kelly CB. Primer DN. Jouffroy M. Patel NR. Molander GA. Acc. Chem. Res. 2016; 49: 1429
    • 4g Romero NA. Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 4h Skubi KL. Blum TR. Yoon TP. Chem. Rev. 2016; 116: 10035
    • 4i Shaw MH. Twilton J. MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 4j Gui Y.-Y. Sun L. Lu Z.-P. Yu D.-G. Org. Chem. Front. 2016; 3: 522
    • 4k Konig B. Eur. J. Org. Chem. 2017; 1979
    • 4l Twilton J. Le C. Zhang P. Shaw MH. Evans RW. MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
    • 4m Qin Q. Jiang H. Hu Z. Ren D. Yu S. Chem. Rec. 2017; 17: 754
    • 4n Gui Y.-Y. Zhou W.-J. Ye J.-H. Yu D.-G. ChemSusChem 2017; 10: 1337
    • 4o Zhou Q.-Q. Zou Y.-Q. Lu L.-Q. Xiao W.-J. Angew. Chem. Int. Ed. 2018; in press; DOI: 10.1002/anie.201803102
  • 5 Tellis JC. Primer DN. Molander GA. Science 2014; 345: 433
  • 6 Zuo ZW. Ahneman DT. Chu LL. Terrett JA. Doyle AG. MacMillan DW. C. Science 2014; 345: 437
  • 7 Joe CL. Doyle AG. Angew. Chem. Int. Ed. 2016; 55: 4040
  • 8 Ahneman DT. Doyle AG. Chem. Sci. 2016; 7: 7002
    • 9a Heitz DR. Tellis JC. Molander GA. J. Am. Chem. Soc. 2016; 138: 12715
    • 9b For a very recent example of bromine radical, see: Huang L. Rueping M. Angew. Chem. Int. Ed. 2018; 57: 10333
    • 10a Shields BJ. Doyle AG. J. Am. Chem. Soc. 2016; 138: 12719
    • 10b For a very recent example with chlorine radical, see: Go SY. Lee GS. Hong SH. Org. Lett. 2018; 20: 4691
    • 11a Shaw MH. Shurtleff VW. Terrett JA. Cuthbertson JD. MacMillan DW. C. Science 2016; 352: 1304
    • 11b Zhang X. MacMillan DW. C. J. Am. Chem. Soc. 2017; 139: 11353
    • 11c Twilton J. Christensen M. DiRocco DA. Ruck RT. Davies IW. MacMillan DW. C. Angew. Chem. Int. Ed. 2018; 57: 5369
  • 12 Nicewicz DA. MacMillan DW. C. Science 2008; 322: 77
  • 13 Gui Y.-Y. Liao L.-L. Sun L. Zhang Z. Ye J.-H. Shen G. Lu Z.-P. Zhou W.-J. Yu D.-G. Chem. Commun. 2017; 53: 1192
    • 14a Gui Y.-Y. Wang Z.-X. Zhou W.-J. Liao L.-L. Song L. Yin Z.-B. Li J. Yu D.-G. Asian J. Org. Chem. 2018; 7: 537
    • 14b Gui Y.-Y. Chen X.-W. Zhou W.-J. Yu D.-G. Synlett 2017; 28: 2581
  • 15 Le C. Liang Y. Evans RW. Li X. MacMillan DW. C. Nature 2017; 547: 79
  • 16 Osawa M. Nagai H. Akita M. Dalton Trans. 2007; 827
  • 17 Kalyani D. McMurtrey KB. Neufeldt SR. Sanford MS. J. Am. Chem. Soc. 2011; 133: 18566
  • 18 Kalyani D. Deprez NR. Desai LV. Sanford MS. J. Am. Chem. Soc. 2005; 127: 7330
  • 19 Neufeldt SR. Sanford MS. Adv. Synth. Catal. 2012; 354: 3517
  • 20 Jiang J. Zhang W.-M. Dai J.-J. Xu J. Xu H.-J. J. Org. Chem. 2017; 82: 3622
  • 21 Sahoo MK. Midya SP. Landge VG. Balaraman E. Green Chem. 2017; 19: 2111
  • 22 Zhang H. Huang X. Adv. Synth. Catal. 2016; 358: 3736
    • 23a Chen M. Shao C.-L. Fu X.-M. Xu R.-F. Zheng J.-J. Zhao D.-L. She Z.-G. Wang C.-Y. J. Nat. Prod. 2013; 76: 547
    • 23b Leskinen MV. Yip K.-T. Valkonen A. Pihko PM. J. Am. Chem. Soc. 2012; 134: 5750
    • 23c Wei Y. Zhao D. Ma D. Angew. Chem. Int. Ed. 2013; 52: 12988
    • 24a Shen L. Zhang M. Wu Y. Qin Y. Angew. Chem. Int. Ed. 2008; 47: 3618
    • 24b Stuart DR. Bertrand-Laperle M. Burgess KM. N. Fagnou K. J. Am. Chem. Soc. 2008; 130: 16474
  • 25 Zoller J. Fabry DC. Ronge MA. Rueping M. Angew. Chem. Int. Ed. 2014; 53: 13264
  • 26 Zhou C. Li P. Zhu X. Wang L. Org. Lett. 2015; 17: 6198
  • 27 Xu N. Li P. Xie Z. Wang L. Chem. Eur. J. 2016; 22: 2236
  • 28 Liu K. Zou M. Lei A. J. Org. Chem. 2016; 81: 7088
  • 29 Sharma UK. Gemoets HP. L. Schröder F. Noël T. Van der Eycken EV. ACS Catal. 2017; 7: 3818
  • 30 Czyz ML. Lupton DW. Polyzos A. Chem. Eur. J. 2017; 23: 14450
  • 31 Xuan J. Zeng T.-T. Feng Z.-J. Deng Q.-H. Chen J.-R. Lu L.-Q. Xiao W.-J. Alper H. Angew. Chem. Int. Ed. 2015; 54: 1625
  • 32 Husinec S. Savic V. Simic M. Tesevic V. Vidovic D. Tetrahedron Lett. 2011; 52: 2733
    • 33a Brunner K. van Dijken A. Börner H. Bastiaansen JJ. A. M. Kiggen NM. M. Langeveld BM. W. J. Am. Chem. Soc. 2004; 126: 6035
    • 33b Grazulevicius JV. Strohriegl P. Pielichowski J. Pielichowski K. Prog. Polym. Sci. 2003; 28: 1297
    • 33c Liu ZW. Guan M. Bian ZQ. Nie DB. Gong ZL. Li ZB. Huang CH. Adv. Funct. Mater. 2006; 16: 1441
    • 33d Wong W.-Y. Ho C.-L. Gao Z.-Q. Mi B.-X. Chen C.-H. Cheah K.-W. Lin Z. Angew. Chem. Int. Ed. 2006; 45: 7800
  • 34 Choi S. Chatterjee T. Choi WJ. You Y. Cho EJ. ACS Catal. 2015; 5: 4796
    • 35a Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 35b Yeung CS. Dong VM. Chem. Rev. 2011; 111: 1215
    • 35c Girard SA. Knauber T. Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
  • 36 Gao X.-W. Meng Q.-Y. Li J.-X. Zhong J.-J. Lei T. Li X.-B. Tung C.-H. Wu L.-Z. ACS Catal. 2015; 5: 2391
  • 37 Zhang G. Liu C. Yi H. Meng Q. Bian C. Chen H. Jian J.-X. Wu L.-Z. Lei A. J. Am. Chem. Soc. 2015; 137: 9273
  • 38 Wu C.-J. Meng Q.-Y. Lei T. Zhong J.-J. Liu W.-Q. Zhao L.-M. Li Z.-J. Chen B. Tung C.-H. Wu L.-Z. ACS Catal. 2016; 6: 4635
  • 39 Zhao Q.-Q. Hu X.-Q. Yang M.-N. Chen J.-R. Xiao W.-J. Chem. Commun. 2016; 52: 12749
  • 40 Thullen SM. Rovis T. J. Am. Chem. Soc. 2017; 139: 15504
  • 41 Yang X.-L. Guo J.-D. Lei T. Chen B. Tung C.-H. Wu L.-Z. Org. Lett. 2018; 20: 2916
  • 42 Zhang M. Ruzi R. Li N. Xie J. Zhu C. Org. Chem. Front. 2018; 5: 749
  • 43 Zheng Y.-W. Chen B. Ye P. Feng K. Wang W. Meng Q.-Y. Wu L.-Z. Tung C.-H. J. Am. Chem. Soc. 2016; 138: 10080
  • 44 Niu L. Yi H. Wang S. Liu T. Liu J. Lei A. Nat. Commun. 2017; 8: 14226
  • 45 Yi H. Niu L. Song C. Li Y. Dou B. Singh AK. Lei A. Angew. Chem. Int. Ed. 2017; 56: 1120
    • 46a Niu L. Liu J. Yi H. Wang S. Liang X.-A. Singh AK. Chiang C.-W. Lei A. ACS Catal. 2017; 7: 7412
    • 46b Niu L. Wang S. Liu J. Yi H. Liang X.-A. Liu T. Lei A. Chem. Commun. 2018; 54: 1659
    • 46c Hu X. Zhang G. Bu F. Luo X. Yi K. Zhang H. Lei A. Chem. Sci. 2018; 9: 1521
    • 46d Hu X. Zhang G. Bu F. Lei A. Angew. Chem. Int. Ed. 2018; 57: 1286
    • 46e Zhang G. Lin Y. Luo X. Hu X. Chen G. Lei A. Nat. Commun. 2018; 9: 1225
    • 47a Trost BM. Angew. Chem. Int. Ed. 1995; 34: 259
    • 47b Hashmi AS. K. Schwarz L. Choi JH. Frost TM. Angew. Chem. Int. Ed. 2000; 39: 2285
    • 47c Hashmi AS. K. Hutchings GJ. Angew. Chem. Int. Ed. 2006; 45: 7896
  • 48 Tlahuext-Aca A. Hopkinson MN. Sahoo B. Glorius F. Chem. Sci. 2016; 7: 89
  • 49 Gauchot V. Sutherland DR. Lee A.-L. Chem. Sci. 2017; 8: 2885
  • 50 Gomes F. Narbonne V. Blanchard F. Maestri G. Malacria M. Org. Chem. Front. 2015; 2: 464
    • 51a Beletskaya IP. Cheprakov AV. Coord. Chem. Rev. 2004; 248: 2337
    • 51b Stuart DR. Fagnou K. Science 2007; 316: 1172
    • 51c Monnier F. Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
    • 51d Ackermann L. Vicente R. Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
  • 52 Gao X.-W. Meng Q.-Y. Xiang M. Chen B. Feng K. Tung C.-H. Wu L.-Z. Adv. Synth. Catal. 2013; 355: 2158
  • 53 Perepichka I. Kundu S. Hearne Z. Li C.-J. Org. Biomol. Chem. 2015; 13: 447
  • 54 Chen X. Tan Z. Gui Q. Hu L. Liu J. Wu J. Wang G. Chem. Eur. J. 2016; 22: 6218
    • 55a Yang F, Koeller J, Ackermann L. Angew. Chem. Int. Ed. 2016; 55: 4759
    • 55b Gandeepan P, Mo J, Ackermann L. Chem. Commun. 2017; 53: 5906
    • 56a Kakiuchi F, Murai S. Acc. Chem. Res. 2002; 35: 826
    • 56b Arockiam PB, Bruneau C, Dixneuf PH. Chem. Rev. 2012; 112: 5879
    • 56c Ackermann L. Acc. Chem. Res. 2014; 47: 281
    • 57a Campos KR. Chem. Soc. Rev. 2007; 36: 1069
    • 57b Satoh T, Miura M. Chem. Eur. J. 2010; 16: 11212
    • 57c Song G, Wang F, Li X. Chem. Soc. Rev. 2012; 41: 3651
  • 58 Fabry DC, Zoller J, Raja S, Rueping M. Angew. Chem. Int. Ed. 2014; 53: 10228
  • 59 Fabry DC, Ronge MA, Zoller J, Rueping M. Angew. Chem. Int. Ed. 2015; 54: 2801
  • 60 Meng Q.-Y, Zhong J.-J, Liu Q, Gao X.-W, Zhang H.-H, Lei T, Li Z.-J, Feng K, Chen B, Tung C.-H, Wu L.-Z. J. Am. Chem. Soc. 2013; 135: 19052
  • 61 For a very recent example, see: Liu J, Ding W, Zhou Q.-Q, Liu D, Lu L.-Q, Xiao W.-J. Org. Lett. 2018; 20: 461