Synthesis 2020; 52(21): 3129-3139
DOI: 10.1055/s-0040-1707247
short review
© Georg Thieme Verlag Stuttgart · New York

Silylboranes as Powerful Tools in Organic Synthesis: Stereo- and Regioselective Reactions with 1,n-Enynes

Department of Chemistry, Organic Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden   eMail: kimo@kth.se
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 08. Juni 2020

Accepted after revision: 13. Juli 2020

Publikationsdatum:
20. August 2020 (online)


Abstract

Bismetalated alkenes, accessible by element–element addition to alkynes, are valuable building blocks in organic synthesis, providing wide opportunities for divergent synthesis. Silaboration of alkynes with a pendant olefinic group, catalyzed by group 10 metal complexes, and subsequent transformation of the silicon and boron functional groups give access to densely functionalized 1,3-dienes and 1,3,5-trienes with defined stereo- and regiochemistry, 1,2-dienes, and carbocyclic and heterocyclic products.

1 Introduction

2 Background

3 Reactions with 1,3-Enynes

4 Cyclization 1,6-Enynes

5 Cyclization 1,7-Enynes

6 Cyclization of 1,n-Enynes (n > 7)

7 Cyclization of Dienynes and Enediynes

8 Cyclization of 1,6-Diynes

9 Conclusions

 
  • References

    • 1a Geissler H. Transition Metal-Catalyzed Cross Coupling Reactions. In Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals. Beller M, Bolm C. Wiley-VCH; Weinheim: 1998: 158
    • 1b Transition Metal-Catalyzed Couplings in Process Chemistry. Magano J, Dunetz JR. Wiley-VCH; Weinheim: 2013
  • 3 Trost BM, Ball ZT. Synthesis 2005; 853
  • 4 Marciniec B. Coord. Chem. Rev. 2005; 249: 2374
  • 5 Vaultier M, Alcaraz G. Science of Synthesis, Vol. 6. Kaufmann DE, Matteson DS. Thieme; Stuttgart: 2004: 721
  • 6 Yoshida H, Shinke A, Kawano Y, Takaki K. Chem. Commun. 2015; 51: 10616
  • 8 For an extensive review on silylboranes and their applications, see: Delvos LB, Oestreich M. Silylboron Reagents. In Science of Synthesis Knowledge Updates, Vol. 2017/1. Oestreich M. Thieme; Stuttgart: 2017. 65
  • 9 Nöth H, Höllerer G. Angew. Chem., Int. Ed. Engl. 1962; 1: 551
    • 10a Suginome M, Matsuda T, Ito Y. Organometallics 2000; 19: 4647
    • 10b Araujo Da Silva JC, Birot M, Pillot J.-P, Pétraud M. J. Organomet. Chem. 2002; 646: 179
    • 10c Boebel TA, Hartwig JF. Organometallics 2008; 27: 6013
    • 10d Oestreich M, Hartmann E, Mewald M. Chem. Rev. 2013; 113: 402
    • 10e Yamamoto E, Shishido R, Seki T, Ito H. Organometallics 2017; 36: 3019

      Recent reports suggest that some boronic acids and boronic acid derivatives are mutagenic in vitro, however not in vivo:
    • 11a Hansen MM, Jolly RA, Linder RJ. Org. Process Res. Dev. 2015; 19: 1507
    • 11b Masuda-Herrera MJ, Dobo KL, Kenyon MO, Kenny JD, Galloway SM, Escobar PA, Reddy MV, Jolly RA, Trejo-Martin A, Brown C, Mckeon M, Young M, Bruce S, Pant K, Dutta A, Kulkarni R, Bercu JP. Environ. Mol. Mutagen. 2019; 60: 766
    • 12a Suginome M, Nakamura H, Ito Y. Chem. Commun. 1996; 2777
    • 12b Suginome M, Matsuda T, Nakamura H, Ito Y. Tetrahedron 1999; 55: 8787
    • 12c Saito N, Saito K, Sato H, Sato Y. Adv. Synth. Catal. 2013; 355: 853
    • 12d Ansell MB, Spencer J, Navarro O. ACS Catal. 2016; 6: 2192
  • 13 Ohmura T, Suginome M. Bull. Chem. Soc. Jpn. 2009; 82: 29
  • 14 Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 15a Nakao Y, Hiyama T. Chem. Soc. Rev. 2011; 40: 4893
    • 15b Chang W.-TT, Smith RC, Regens CS, Bailey AD, Werner NS, Denmark SE. Org. React. 2011; 75: 213
  • 16 Otaka A, Katagiri F, Kinoshita T, Odagaki Y, Oishi S, Tamamura H, Hamanaka N, Fujii N. J. Org. Chem. 2002; 67: 6152
    • 17a Hudrlik PF, Gebreselassie P, Tafesse L, Hudrlik AM. Tetrahedron Lett. 2003; 44: 3409
    • 17b Heitzman CL, Lambert WT, Mertz E, Shotwell JB, Tinsley JM, Va P, Roush WR. Org. Lett. 2005; 7: 2405
  • 18 Miura T, Nishida Y, Murakami M. J. Am. Chem. Soc. 2014; 136: 6223
  • 19 Sagawa T, Asano Y, Ozawa F. Organometallics 2002; 21: 5879
  • 20 Ohmura T, Oshima K, Taniguchi H, Suginome M. J. Am. Chem. Soc. 2010; 132: 12194
  • 21 Sakaki S, Biswas B, Musashi Y, Sugimoto M. J. Organomet. Chem. 2000; 611: 288
  • 22 Onozawa S, Hatanaka Y, Tanaka M. Chem. Commun. 1997; 1229
  • 23 Ohmura T, Masuda K, Furukawa H, Suginome M. Organometallics 2007; 26: 1291
    • 24a Ohmura T, Oshima K, Suginome M. Chem. Commun. 2008; 1416
    • 24b Ohmura T, Oshima K, Suginome M. Angew. Chem. Int. Ed. 2011; 50: 12501
  • 25 Nagao K, Ohmiya H, Sawamura M. Org. Lett. 2015; 17: 1304
  • 26 Fritzemeier R, Santos WL. Chem. Eur. J. 2017; 23: 15534
  • 27 Zhao M, Shan C.-C, Wang Z.-L, Yang C, Fu Y, Xu Y.-H. Org. Lett. 2019; 21: 6016
  • 28 Gryparis C, Stratakis M. Org. Lett. 2014; 16: 1430
  • 29 Gu Y, Duan Y, Shen Y, Martin R. Angew. Chem. Int. Ed. 2020; 59: 2061
  • 30 Faßbender SI, Molloy JJ, Mück-Lichtenfeld C, Gilmour R. Angew. Chem. Int. Ed. 2019; 58: 18619
  • 31 Flynn AB, Ogilvie WW. Chem. Rev. 2007; 107: 4698
    • 32a Jiao J, Hyodo K, Hu H, Nakajima K, Nishihara Y. J. Org. Chem. 2014; 79: 285
    • 32b Ohmura T, Oshima K, Suginome M. Organometallics 2013; 32: 2870
  • 33 Shintani R, Kurata H, Nozaki K. J. Org. Chem. 2016; 81: 3065
    • 34a Suginome M, Nakamura H, Ito Y. Angew. Chem., Int. Ed. Engl. 1997; 36: 2516
    • 34b Burks HE, Morken JP. Chem. Commun. 2007; 4717
  • 35 Trost BM, Masters JT. Chem. Soc. Rev. 2016; 45: 2212
    • 38a Bates CG, Saejueng P, Venkataraman D. Org. Lett. 2004; 6: 1441
    • 38b Wen Y, Wang A, Jiang H, Zhu S, Huang L. Tetrahedron Lett. 2011; 52: 5736
    • 38c Zhu Y, Li T, Qu X, Sun P, Yang H, Mao J. Org. Biomol. Chem. 2011; 9: 7309
    • 39a Serra-Muns A, Guérinot A, Reymond S, Cossy J. Chem. Commun. 2010; 46: 4178
    • 39b Wang N.-N, Huang L.-R, Hao W.-J, Zhang T.-S, Li G, Tu S.-J, Jiang B. Org. Lett. 2016; 18: 1298
    • 39c Cembellín S, Dalton T, Pinkert T, Schäfers F, Glorius F. ACS Catal. 2020; 10: 197
    • 39d Liu J, Yang J, Schneider C, Franke R, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2020; 59: 9032
    • 39e Ma Q, Wang Y, Tsui GC. Angew. Chem. Int. Ed. 2020; 59: 11293
  • 40 Lüken C, Moberg C. Org. Lett. 2008; 10: 2505
  • 41 Fu L, Greßies S, Chen P, Liu G. Chin. J. Chem. 2020; 38: 91
  • 42 Zhou H, Moberg C. J. Am. Chem. Soc. 2012; 134: 15992
  • 43 Cu-catalyzed enantioselective protosilylations of 1,3-enynes using PhMe2SiB(pin) are recent examples of 1,4-additions to form allenes: Yang C, Liu Z.-L, Dai D.-T, Li Q, Ma W.-W, Zhao M, Xu Y.-H. Org. Lett. 2020; 22: 1360
    • 44a Hiyama T. J. Organomet. Chem. 2002; 653: 58
    • 44b Hiyama T, Hatanaka Y. Pure Appl. Chem. 1994; 66: 1471
  • 45 Hirabayashi K, Mori A, Kawashima J, Suguro M, Nishihara Y, Hiyama T. J. Org. Chem. 2000; 65: 5342
  • 46 Denmark SE, Wehrli D. Org. Lett. 2000; 2: 565
  • 47 Denmark SE, Sweis RF. J. Am. Chem. Soc. 2004; 126: 4876
  • 48 Li E, Zhou H, Östlund V, Hertzberg R, Moberg C. New. J. Chem. 2016; 40: 6340
  • 49 One case of inversion of an olefinic bond has been reported, see ref 47.
  • 50 Denmark SE, Sweis RF, Wehrli D. J. Am. Chem. Soc. 2004; 126: 4865
  • 51 Sasaki Y, Horita Y, Zhong C, Sawamura M, Ito H. Angew. Chem. Int. Ed. 2011; 50: 2778
  • 52 Xu S, Zhang Y, Li B, Liu S.-Y. J. Am. Chem. Soc. 2016; 138: 14566
  • 53 Zhou H, Moberg C. Org. Lett. 2013; 15: 1444
  • 54 De Paolis M, Chataigner I, Maddaluno J. Top. Curr. Chem. 2012; 327: 87
    • 55a Šiaučiulis M, Ahlsten N, Pulis AP, Procter DJ. Angew. Chem. Int. Ed. 2019; 58: 8779
    • 55b Wang D, de Wit MJ. M, Szabó KJ. J. Org. Chem. 2018; 83: 8786
  • 56 Kiyota S, In S, Saito R, Komine N, Hirano M. Organometallics 2016; 35: 4033; and references therein
  • 57 For preparation of starting materials, see the references reporting their use.
    • 58a Toullec PY, Michelet V. Top. Curr. Chem. 2011; 302: 31
    • 58b Marinetti A, Jullien H, Voituriez A. Chem. Soc. Rev. 2012; 41: 4884
    • 58c Watson ID. G, Toste FD. Chem. Sci. 2012; 3: 2899
    • 58d Chen W.-W, Xu M.-H. Org. Biomol. Chem. 2017; 15: 1029
  • 59 Sato Y, Imakuni N, Mori M. Adv. Synth. Catal. 2003; 345: 488
  • 60 Buñuel E, Cárdenas DJ. Eur. J. Org. Chem. 2016; 5446
    • 61a Marco-Martínez J, López-Carrillo V, Buñuel E, Simancas R, Cárdenas DJ. J. Am. Chem. Soc. 2007; 129: 1874
    • 61b Cabrera-Lobera N, Rodríguez-Salamanca P, Nieto-Carmona JC, Buñuel E, Cárdenas DJ. Chem. Eur. J. 2018; 24: 784
    • 61c Cabrera-Lobera N, Quirós MT, Buñuel E, Cárdenas DJ. Catal. Sci. Technol. 2019; 9: 1021
  • 62 Zhang F, Wang S, Liu Z, Bai Y, Zhu G. Tetrahedron Lett. 2017; 58: 1448
  • 63 Ohmura T, Sasaki I, Suginome M. Org. Lett. 2019; 21: 1649
  • 64 Cho HY, Morken JP. Chem. Soc. Rev. 2014; 43: 4368
  • 65 Cabrera-Lobera N, Quirós MT, Brennessel WW, Neidig ML, Buñuel E, Cárdenas DJ. Org. Lett. 2019; 21: 6552
    • 66a Mori M, Hirose T, Wakamatsu H, Imakuni N, Sato Y. Organometallics 2001; 20: 1907
    • 66b Lautens M, Mancuso J. Synlett 2002; 394
    • 66c Sato Y, Imakuni N, Hirose T, Wakamatsu H, Mori M. J. Organomet. Chem. 2003; 687: 392
  • 67 Onozawa S.-y, Hatanaka Y, Choi N, Tanaka M. Organometallics 1997; 16: 5389
  • 68 PEPPSI = pyridine-enhanced precatalyst preparation stabilization and initiation.
    • 69a Gerdin M, Nadakudity SK, Worch C, Moberg C. Adv. Synth. Catal. 2010; 352: 2559
    • 69b Erratum: Gerdin M, Nadakudity SK, Worch C, Moberg C. Adv. Synth. Catal. 2011; 353: 805
  • 70 Pardo-Rodríguez V, Buñuel E, Collado-Sanz D, Cárdenas DJ. Chem. Commun. 2012; 48: 10517
  • 71 Wu C, Liao J, Ge S. Angew. Chem. Int. Ed. 2019; 58: 8882
  • 72 Ojima I, Vu AT, Lee S.-Y, McCullagh JV, Moralee AC, Fujiwara M, Hoang TH. J. Am. Chem. Soc. 2002; 124: 9164
  • 73 Apte S, Radetich B, Shin S, RajanBabu TV. Org. Lett. 2004; 6: 4053
  • 74 Singidi RR, Kutney AM, Gallucci JC, RajanBabu TV. J. Am. Chem. Soc. 2010; 132: 13078
  • 75 Xiao Y.-C, Moberg C. Org. Lett. 2016; 18: 308
  • 76 López-Durán R, Martos-Redruejo A, Buñuel E, Pardo-Rodríguez V, Cárdenas DJ. Chem. Commun. 2013; 49: 10691
  • 77 Marco-Martínez J, Buñuel E, Muñoz-Rodríguez R, Cárdenas DJ. Org. Lett. 2008; 10: 3619
  • 78 Suginome M, Matsuda T, Ito Y. Organometallics 1998; 17: 5233
  • 79 Zhang Q, Liang Q.-J, Xu J.-L, Xu Y.-H, Loh T.-P. Chem. Commun. 2018; 54: 2357
  • 80 Gréau S, Radetich B, RajanBabu TV. J. Am. Chem. Soc. 2000; 122: 8579